
1 
 

Profiles Research Networking Software (Beta Version) 
Installation Guide 
 
 
Documentation Version: July 22, 2011 
 
Software Version: July 22, 2011 (ProfilesRNSBeta110722) 
 
 
Table of Contents 
 
Hardware and Operating System Requirements .......................................................................... 2 
Outline of Installation Process ...................................................................................................... 3 
Database Components ................................................................................................................. 4 
Installing the Database ................................................................................................................. 5 
Loading Person Data .................................................................................................................. 12 
Geocoding and Google Maps ..................................................................................................... 18 
Obtaining Publications ................................................................................................................ 19 
Scheduling Database Jobs ......................................................................................................... 23 
Installing the Website .................................................................................................................. 25 
Website Authentication Options .................................................................................................. 30 
Modifying the Website’s Look-And-Feel ..................................................................................... 31 
Updating Person Data After Go-Live .......................................................................................... 32 
Proxies ........................................................................................................................................ 33 
Federated Search (DIRECT) ...................................................................................................... 34 
Software Updates ....................................................................................................................... 35 
Release Notes ............................................................................................................................ 36 
Known Issues .............................................................................................................................. 42 
Acknowledgements ..................................................................................................................... 43 
More Information ......................................................................................................................... 44 
 
  



2 
 

Hardware and Operating System Requirements 
 

Profiles is a Microsoft .NET 3.5 website that uses a Microsoft SQL Server 2005 (or 2008) 
database. You can use the same server (or a virtual machine) for the website and database; 
however, we recommend you separate the two. The database for Profiles is much more 
resource intense then the website. The database will require about 10 GB for 10,000 people. 
This is not a lot of space, but having a fast disk and as much CPU and RAM as possible for the 
database will benefit performance more than building a more robust web server. The website 
itself uses little disk space and bandwidth.  

 

Required software packages: 

• Microsoft .NET 3.5 

• IIS6 or IIS7.X 

• Microsoft SQL Server 2005 or 2008 with the following components installed: 

o SQL Server Agent 

o SQL Server Integration Services 

o All current service packs (including service pack 3 if using SQL Server 2008). 

• Microsoft Visual Studio 2008 

 

  



3 
 

Outline of Installation Process 
 

1. Install the database 

2. Place basic HR data (name, email, address, affiliation, faculty rank, etc.) into database 
“loading” tables. 

3. Run a series of processes that use the loading tables to populate the remaining 
database tables and automatically locate publications from PubMed.  

4. Setup scheduled database jobs to keep the data up-to-date. 

5. Install and configure the website code. 

 

 
  



4 
 

Database Components 
 

There are three database components of Profiles: 

 

1. There is a profiles database that contains the data tables, stored procedures, and other 
database objects used by the website. It is distributed as a backup file, which you can 
restore into an empty SQL Server database. Some of the tables in the backup file are 
pre-populated with data, such as a set of tables that contain the Medical Subject 
Heading (MeSH 2010) vocabulary. You will need to provide the database with basic 
person information (e.g., names, titles, and affiliations), typically as a one-time data load 
or an automated feed from your human resource (HR) database. 

2. There are three SSIS packages that are used to pull data from external sources. The 
first takes the person data you loaded into Profiles and calls a “disambiguation engine” 
web service hosted at Harvard to obtain Medline/Pubmed article IDs for those people. 
The second retrieves the full citation data for those Pubmed IDs. The third takes address 
information you provided about people and calls a Google API to convert these to 
latitude and longitude coordinates.  

3. To optimize performance, there are several “cache” tables in the database, which 
contain aggregate counts and denormalized copies of the raw data. To keep these 
cache tables up-to-date, Profiles contains a series of database jobs, which can be 
scheduled to run periodically to rebuild these tables. 

 
  



5 
 

Installing the Database 
 

Follow the steps below to install the database: 

 

1. Unzip the compressed database file. 

2. Restore Profiles_Core.bak to an empty SQL Server database.  

• The recommended database name is “Profiles” 

• Make sure SQL Server, SQL Server Agent and SQL Server Integration Services  
are up and running 

You can check a service’s status from Start  Control Panel  Administrative 
Tools  Services 

 

 
 

• Launch Microsft SQL Server Management Studio 

Start  All Programs  Microsft SQL Server 2005  SQL Server Management 
Studio and then connect to your SQL Server using either Windows Authentication or 
SQL Server Authentication. Once you connected, you will see a screen like the 
following: 

 



6 
 

 
 

In the above screen shot, you can see there is a green arrow close to SQL Server 
Agent, which means the service is up and running. 

 

• Restore database 

Right click Databases  Choose Restore Database … and  

1. Set To database to Profiles 

2. Check From device radio button and pick up the file from your filesystem 

3. Check Restore checkbox 

4. Enter OK 

The database backup for profile is loaded into your SQL Server as Profiles. If you click 
Databases node in your Microsoft SQL Server Management Studio, you should be able 
to see Profiles from the displayed list. 



7 
 

 
 

3. Import  the following SSIS packages into the SQL Server msdb database: 

Before you can import SSIS packages into the SQL Server msdb database, you need to 
connect to your SQL Server Integration Services from Microsoft SQL Server 
Management Studio.  

• Left click Connect (the left corner of the Studio) 

• Pick Integration Services… 

You will notice an Integration Services node added to the left panel. 



8 
 

 
 

• Expand newly added Integration Services node and you’ll see Running 
Packages and Stored Packages nodes 

• Expand the Stored Packages node and right click MSDB, choose Import 
Package …, and then popup an Import Package window. From this window, do 
the following: 

1. Package location:  File System 

2. Navigate and choose a package from your filesystem to install 

3. Left click Package name field and the package name will be filled 
automatically 

4. Click Ok to install  



9 
 

 
 

You use this procedure to install the following three packages. Note that there 
are different versions of these packages for SQL Server 2005 and SQL Server 
2008. The 2005 packages are in a folder named SQL2005, and the 2008 
packages are in a folder named SQL2008. 

1. PubMedDisambiguation_GetPubs.dtsx 

2. PubMedDisambiguation_GetPubMEDXML.dtsx 

3. ProfilesGeoCode.dtsx 

Successfully installed packages will be displayed under MSDB node as the 
following: 



10 
 

 
 

4. Create an admin account with sysadmin privileges that can be used to execute a series 
of scheduled jobs.  

• The script “ProfilesSetUserPermissions.sql” will create a default 
admin/application user account, AppProfilesUser, with all of the appropriate 
permissions.  

• If you want to use a database user account other than AppProfilesUser, then that 
account will need to be a sysadmin and you will have to grant execute 
permissions for all stored procedures in the Profiles database. (We recommend 
that you use the ProfilesSetUserPermissions.sql script as a template to help you 
do this. Just do a global search and replace of the AppProfilesUser, with your 
new database username. The default password can also be changed in the first 
part of this script.  

 

NOTE - AppProfilesUser is the recommended/default account.) 

 

• If you want to use a database user account other than the default account setup 
provided in the Profiles_Core.bak database, then remember to grant appropriate 
stored procedure execute permissions. The script 
ProfilesSetUserPermissions.sql is a template to help you do this. Just do a global 
search and replace of the AppProfilesUser, with your new database username. 



11 
 

The default password can also be changed in the first part of this script. NOTE - 
AppProfilesUser is the recommended/default account. 

 

Once the user created, double check its permission and make sure it has both public 
and sysadmin persmissions using the studio: Security  Logins  right click <User 
created>  Properties  Server Roles. 

If the sysadmin role cannot assign to this newly created user, you need to make sure 
this user can install SSIS packages and run jobs.   

 

5. The following scripts that create scheduled jobs need to be modified so that they work in 
your particular environment: 

• ProfilesYearlyJobs.sql 
• ProfilesNightlyJobs.sql 
• ProfilesWeeklyJobs.sql 
• ProfilesMonthlyJobs.sql 
• ProfilesHourlyJobs.sql 
• PubMedDisambiguation_GetPubs.sql 
• PubMedDisambiguation_GetPubMEDXML.sql 
• ProfilesGeoCodeJob.sql 

For each of the scripts, modify the following parameters in the sql code: 
• @owner_login_name – the name of the sysadmin account created in step #4. 
• @database_name – the name of the profiles database. 
• @server_name – the name of the sql server instance. 

Note that there are two versions of PubMedDisambiguation_GetPubs.sql and 
PubMedDisambiguation_GetPubMEDXML.sql, depending on whether you are using 
SQL Server 2005 or 2008. The 2005 files are in the folder SQL2005, and the 2008 files 
are in the folder SQL2008. 

 
6. The following scripts that call SSIS Packages need to be modified so that they work in 

your particular environment: 
• PubMedDisambiguation_GetPubs.sql 
• PubMedDisambiguation_GetPubMEDXML.sql 
• ProfilesGeoCodeJob.sql 

For each of the scripts listed in step #6, modify the following parameters in the sql code: 
• Replace  YourProfilesServerName  with the name of your Profiles database 

server. 
• Replace  YourProfilesDatabaseName  with the name of your Profiles 

database. 
 

7. Execute the scripts you modified in steps #5 and #6. 
 
 

 
  



12 
 

Loading Person Data 
 

Profiles requires that you provide basic demographic data about people. This can be a one-time 
import, or more likely you will want to setup a data feed from a human resources (HR) system 
that updates Profiles nightly. The general process is that you place the data in a set of “loading” 
tables, and then Profiles will copy the data into the actual tables used by the website. During 
this step, Profiles can automatically create unique IDs for people and generate several lookup 
tables. There are several concepts to be aware of with how Profiles handles person data: 

 

1. Profiles makes a distinction between the people who have profiles (Persons) and the 
people who can login to the website (Users). In general, Persons will be a subset of 
Users. At a typical academic institution, the Persons will be faculty, and the Users will be 
the faculty, staff, and students. Note that in order for someone to be able to use features 
of the site that require a login, such as “active networking” and “proxies”, he or she will 
need to have a user account. 

2. There are four main loading tables:  

a. The _person table has one row per person and includes fields such as first 
name, middle name, last name, name suffix, email, phone, fax, and address. 

b. The _person_affiliations table lists a person’s titles, institutions, departments, 
divisions, and faculty rank (e.g., “associate professor”). This table can have 
multiple rows per person, reflecting the multiple jobs or roles a person has in your 
organization. 

c. The _person_filter_flags table allows you to extend the data model with custom 
Boolean flags that are relevant to your organization, such as “emeritus”, “visiting”, 
“student”, etc. There can be multiple flags per person. Flags can be grouped into 
categories. For example, “faculty”, “staff”, and “student” can be grouped into a 
category named “job type”. 

d. The _user table has one row per user and includes basic user name and 
affiliation information. The _user table is used to create accounts for individuals 
who need access to the website, but will not have their own profiles. The same 
individual should not be listed in both the _person and _user tables. 

3. The Profiles code has gone through multiple versions. In order to minimize the impact of 
changes on custom data feeds that some institutions have created for older versions of 
the software, we have chosen not to remove columns from the loading tables even if 
they are no longer used by Profiles. These defunct columns are noted in the column 
definitions below. These columns might be deleted in the future. 

4. The raw HR data from many institutions needs to be modified before Profiles can copy it 
from the loading tables into the actual tables used by the website. To assist with this 
process, we made the column sizes in the loading tables longer than the maximum 
allowed length in the actual tables, and in some cases we made columns in the loading 
table of type nvarchar when they are numeric in the actual tables. This will reduce errors 
when inserting the raw HR data into the loading tables, but you must perform your own 
validation and cleanup to make sure the final data in the loading tables meet the size 
and type limits as outlined in the column definitions below.  



13 
 

5. There is an “all-or-nothing” approach in the loading tables with respect to nulls in 
optional columns. If you do not want to use an optional column, then all values in it must 
be null. If you want to use an optional column, there cannot be any nulls in it—use an 
empty string instead. 

6. Each of the loading tables has a field named “internalusername”. This should be some 
unique value that you use for each person and user that you load into Profiles. The 
internalusername allows Profiles to join the loading tables during the data load process. 
You should always use the same internalusername for a given person or user each time 
you load that individual into Profiles. The internalusername is not displayed on the 
Profiles website. Instead, for each internalusername, Profiles will create either a 
PersonID or a UserID, and that value will be displayed on the website. During the load 
process, you can indicate that you want the PersonID and UserID to be equal to the 
value of the internalusername; otherwise, Profiles will create its own values based on 
sequential integers. 

7. Do not make changes to the data in the actual tables used by Profiles. Instead, always 
place corrections or updates in the loading tables, and re-run the loading scripts. Data is 
copied to multiple tables within Profiles to improve performance; and, if you change it in 
one place and not the others, it can result in foreign key violations or cause the website 
to crash. 

8. The Profiles loading process does not fully validate the data in the loading tables before 
copying it to the tables actually used by the website. This is a known limitation of the 
software. If the loading process is run with invalid data in the loading tables, you might 
need to restart from scratch with the original database that came with the software. 

9. We recognize that raw HR data is often “messy” and the institution, department, and 
division names stored in your HR database might be different than how you want these 
displayed on the Profiles website. In the _person_affiliations tables, place the actual 
names in the “institutionfullname”, “departmentfullname”, and “divisionfullname” 
columns. Indicate the names that should be displayed on the website in the columns 
“institution”, “department”, and “division”. Even if they are the same value, you must 
provide both an actual name and a display name when listing institutions, departments, 
or divisions.  

 

Below are the column definitions for each of the loading tables. The Data Type and Load Length 
describe the columns in the loading tables. The Max Length corresponds to the columns into 
which the data is copied during the loading process. Despite the size of the columns in the 
loading tables, if their length exceeds the Max Length, then the loading process might fail. Also, 
note that some columns, such as _person.floor are type nvarchar in the loading table, but need 
to have numeric values for the loading process to work.  

1. Table: _person 
Column Data Type Load Length Max Length Category 
internalusername nvarchar 2000 50 Required 
internalldapusername nvarchar 2000 50 Not Used 
internalfacultyid nvarchar 200 int Not Used 
internaljobcode nvarchar 200 50 Not Used 
internaldepttype nvarchar 200 50 Not Used 
numpublications int  int Not Used 
firstname nvarchar 2000 50 Optional 



14 
 

middlename nvarchar 2000 50 Optional 
lastname nvarchar 2000 50 Required 
displayname nvarchar 2000 255 Required 
degree nvarchar 2000 50 Not Used 
suffix nvarchar 2000 50 Optional 
addressline1 nvarchar 2000 55 Optional 
addressline2 nvarchar 2000 55 Optional 
addressline3 nvarchar 2000 55 Optional 
addressline4 nvarchar 2000 55 Optional 
addressstring nvarchar 2000 1000 Required 
state varchar 1000 2 Not Used 
city varchar 1000 100 Not Used 
zip varchar 1000 10 Not Used 
building nvarchar 2000 255 Optional 
room nvarchar 2000 255 Optional 
floor nvarchar 200 int Optional 
latitude float  decimal Optional 
longitude float  decimal Optional 
phone nvarchar 2000 35 Optional 
fax nvarchar 2000 25 Optional 
internalpersontype varchar 1000 50 Not Used 
title nvarchar 2000 255 Not Used 
internaladmintitle nvarchar 2000 200 Not Used 
emailaddr nvarchar 2000 255 Optional 
internalfullparttime nvarchar 2000 50 Not Used 
assistantname nvarchar 2000 255 Not Used 
assistantphone nvarchar 2000 35 Not Used 
AssistantEmail nvarchar 2000 255 Not Used 
AssistantAddress nvarchar 2000 1000 Not Used 
AssistantFax nvarchar 2000 25 Not Used 
AssistantUserID nvarchar 2000 int Not Used 
isactive bit  bit Required 
isvisible bit  bit Required 

 Notes: 

a. The PubMed disambiguation process uses the firstname, middlename, lastname, 
suffix, and emailaddr columns. Therefore, although only lastname is required, 
providing values for the other columns will greatly aid disambiguation.  

b. The columns addressline1, addressline2, addressline3, and addressline4 are used 
by the website to display a person’s address. The addressstring column is not 
displayed on the website. 

c. The addressstring column is used during the geocoding process to determine the 
latitude and longitude of the person. The addressstring should be a valid street 
address (i.e. street number, city, state, zip) and should not contain department 
names, room numbers, mailbox numbers, etc. The addressstring column is only 
required if you want to be able to display the location of people on a map or take 
advantage of physical distance metrics in Profiles. Otherwise, you can leave it blank. 
Note that the addressstring column is not automatically formed from the 
addressline1-4 columns and vice versa; in general, you will want to list the address in 
both places so that it appears on the website AND the person appears on maps. The 
latitude and longitude columns will override the results of the automatic geocoding, 
which can be useful if you do not have a precise street address for a person. 



15 
 

d. The building, room, and floor columns are not displayed on the website. They are 
only used to estimate the physical distance between people who share the same 
street address. 

e. If isactive=1, then a profile will be created for the person. If isactive=0, then the 
profile will be removed from the website. Note that changing isactive=0 will not 
deactivate the person’s corresponding user account, and the person will still be able 
to login to Profiles. To deactivate a user account, manually change this person’s 
record in the user (not _user) table to isactive=0. 

f. If isvisible=1, then the content of a profile will be displayed when a user goes to its 
URL. If isvisible=0, then the profile will be replaced by a message that states that it is 
not available at this time. However, if isvisible=0, then that person will still be listed in 
other people’s networks and in search results. 

 

2. Table: _person_affiliations 
Column Data Type Load Length Max Length Category 
internalusername nvarchar 2000 50 Required 
internalldapusername nvarchar 2000 50 Not Used 
title nvarchar 2000 200 Optional 
internaladmintitle nvarchar 2000 200 Not Used 
emailaddr nvarchar 2000 200 Don’t Use 
primaryaffiliation bit  bit Required 
affiliationorder tinyint  int Required 
institutionname nvarchar 2000 500 Optional 
institutionfullname nvarchar 2000 500 Optional 
institutionabbreviation nvarchar 2000 50 Optional 
departmentname nvarchar 2000 500 Optional 
departmentfullname nvarchar 2000 500 Optional 
departmentabbreviation nvarchar 2000 50 Not Used 
departmentvisible bit  bit Optional 
divisionname nvarchar 2000 500 Optional 
divisionfullname nvarchar 2000 500 Optional 
divisionabbreviation nvarchar 2000 50 Not Used 
facultyrankcode nvarchar 200 50 Don’t Use 
facultyrank varchar 1000 100 Optional 
facultyrankfullname varchar 1000 100 Not Used 
facultyrankorder tinyint  tinyint Optional 
internalfullparttime nvarchar 2000 50 Not Used 
is_visiting bit  bit Not Used 

 Notes: 

a. Each person must have exactly one row in _person_affiliations where 
primaryaffiliation=1. For all additional affiliations, set primaryaffiliation=0. 

b. The affiliationorder for a person’s primary affiliation (primaryaffiliation=1) should be 
set to 1. All other affiliations for a person should be sequentially ordered (e.g., 
affiliationorder=2, affiliationorder=3, etc.). The same person should not have two 
affiliations with the same affiliationorder value. 

c. Departmentvisible is required if using department names. Set departmentvisible=1 if 
you want the corresponding departmentname to appear in the Department drop-
down menu on the Profiles Search form. Otherwise, set departmentvisible=0. 

d. The institutionabbreviation is not displayed on the website, but it is used during the 
data load process. There must be a one-to-one mapping between institutionname 



16 
 

and institutionabbreviation. We suggest setting these two columns to the same value 
if possible. 

e. The emailaddr and facultyrankcode columns are not used by Profiles; however, you 
must set these columns to NULL for the loading process to work properly. 

f. Facultyrankorder is required if you are using the facultyrank column. Every distinct 
facultyrank value in the _person_affiliations table needs to have a different 
facultyrankorder. (Unlike affiliationorder, which is by person, the facultyrankorder is 
global for the table.) For example, if the faculty ranks in your institution are Professor, 
Associate, and Assistant, then the facultyrankorder should be 1 for every affiliation 
whose rank is Professor, 2 for every affiliation whose rank is Associate, and 3 for 
every affiliation whose rank is Assistant. Note that a person might have two 
affiliations with the same facultyrank, in which case both affiliations will also have the 
same facultyrankorder. 

 

3. Table: _person_filter_flags 
Column Data Type Load Length Max Length Category 
internalusername varchar 50 50 Required 
filterrank int  int Not Used 
personfilter varchar 50 50 Required 

 Notes: 

a. After running the data load process, the person_filters table will be populated with a 
distinct list of personfilter values from the _person_filter_flags table. The 
person_filters.PersonFilterCategory and person_filters.PersonFilterSort columns will 
be set to NULL; however, you must manually enter values into these columns for the 
person filters to appear on the website. Person filters with the same 
PersonFilterCategory will be grouped under the same heading in the Profiles Search 
form drop-down menu. The PersonFilterSort column is used to order the person 
filters in the Profiles Search form drop-down menu. 

b. The PersonFilter and PersonFilterCategory values will be specific to your institution. 
For example, PersonFilters “faculty”, “staff”, and “student” can be grouped into a 
PersonFilterCategory named “job type”; “clinical” and “research” can be grouped into 
“faculty type”; and “past projects” and “current opportunities” can be grouped into 
“mentoring”. 

 

4. Table: _user 
Column Data Type Load Length Max Length Category 
internalusername nvarchar 2000 50 Required 
internalldapusername nvarchar 2000 50 Not Used 
firstname nvarchar 2000 100 Optional 
lastname nvarchar 2000 100 Required 
displayname nvarchar 2000 255 Required 
phone nvarchar 2000 35 Not Used 
emailaddr nvarchar 2000 255 Not Used 
institutionfullname nvarchar 2000 500 Optional 
departmentfullname nvarchar 2000 500 Optional 
canbeproxy bit  bit Required 

 Notes: 

a. Only list individuals in this table who are not listed in the _person table. 
b. Set canbeproxy=1 if the user is allowed to be an editing proxy for another person 

with a profile. Otherwise, set canbeproxy=0. 



17 
 

 

There are several mistakes that users frequently make when entering data into the loading 
tables. Double check that you have not done any of these common errors: 

1. ERROR: There are values in the loading tables that are longer than the allowed Max 
Length. 

2. ERROR: The same internalusername value is being used more than once in the 
_person or _user tables. 

3. ERROR: There are nulls in a column that also has non-null values. 
4. ERROR: The columns isactive and isvisible are set to 0 when you intended for that 

person to be shown on the website. 
5. ERROR: The column addresslineN is being used, but addressstring is null or empty (or 

vice versa). 
6. ERROR: The required column _person_affiliations.primaryaffilation is set to NULL. 
7. ERROR: There is more than one record per person in _person_affiliations with 

primaryaffilation=1. 
8. ERROR: A person does not have any records in _person_affiliations with 

primaryaffiliation=1. 
9. ERROR: The required column _person_affiliations.affiliationorder is set to NULL. 
10. ERROR: The same _person_affiliations.affiliationorder is being used more than once for 

the same person. 
11. ERROR: The same facultyrankorder is being used for two different facultyranks, or two 

different facultyrankorders are being used for the same facultyrank. 

 

Once you have placed data into the loading tables, confirm that you have not made any of the 
above errors by executing the stored procedure “usp_ValidateProfilesLoaderTables”. It will 
generate a report listing any data problems that it finds. Note that this procedure does not check 
for all possible errors. It only searches for the most common problems.  

 

Once you have validated your data, execute the stored procedure “usp_loadprofilesdata”. This 
will parse the data in the loading tables and populate the actual person, user, and related tables. 
This procedure takes 1 input parameter, @use_internalusername_as_pkey. If this is set to 1, 
then Profiles will use the internalusername  columns in the _person and _user  tables as the 
PersonID and UserID. Otherwise, Profiles will generate its own unique values using sequential 
integers. 

 

User Passwords 

The data load process does not generate passwords for users, and there is no administrative 
interface to setup accounts. You must manually enter passwords into the user.password column 
or build your own data feed to populate this column. Many institutions replace the default 
authentication C# code within the Profiles RNS application with custom code that uses the 
institution’s existing authentication mechanisms. See the section below on Website 
Authentication Options for more information. 

  



18 
 

Geocoding and Google Maps 
 

In order for Profiles to display the locations of faculty on a map: 

1. Profiles must convert person addresses to latitude and longitude coordinates. It uses the 
addressstring column in the person table for this purpose. Thus, this field must be 
populated in the _person loading table to display people on Google Maps. The value for 
addressstring should be a street address, with no additional information. For example, a 
valid addressstring is “25 Shattuck Street, Boston, MA 02115”. An invalid addressstring 
is “Harvard Medical School, Information Technology, 25 Shattuck Street, Room 101a, 
Box 12, Boston, MA 02115”. 

2. Register for a Google Map Key (http://code.google.com/apis/maps/signup.html). Google 
Map Keys are unique to the domain of the web page rendering the map. So, you might 
need to register multiple Google Map Keys, depending on how you setup Profiles in your 
environment. After you register the keys, insert them into the Profiles database table 
named “google_keys”. You will need to create two records for each key. For one record, 
the google_keys.app column should be set to “maps”, and for the other record, the 
google_keys.app column should be set to “geocode”. In the google_keys.domain 
column, place the domain you used to register the Google Map Key. In the 
google_keys.gkey column, place the sequence of characters Google gave you when you 
registered for the key. See the example below: 
insert into google_keys (app, domain, gkey) 
   values ('maps','http://yourprofilesdomain','ABQIAAA…7BVmuODxkQ') 
 
insert into google_keys (app, domain, gkey) 
   values ('geocode','http://yourprofilesdomain','ABQIAAA…7BVmuODxkQ') 

3. After you have completed loading the person data, run the ProfilesGeoCode job. This 
will send each unique addressstring in the database to a Google web service API, which 
will return the coordinates. Note that Profiles can only process 3 unique addresses per 
second because of Google’s policy on how frequently its API can be called. 

4. In the website web.config file, set the default latitude and longitude when maps are 
displayed in Profiles. Do this by modifying the values for the keys 
GoogleMapCenterLatitude and GoogleMapCenterLongitude. 

5. Optional: When displaying Google Maps, Profiles lets the user select from several pre-
defined zoom and centering configurations. For example, by default, Harvard’s Profiles 
shows the city of Boston, but users can click a link to zoom out to show all of New 
England. Enter your list of map configurations in the google_map_preferences table. 
One row in this table should be flagged as DefaultLevel = 1. Note that 
http://maps.google.com has a new Google Labs feature that shows you the latitude and 
longitude of where your mouse is pointing. This can be helpful for editing the 
google_map_preferences table. 

In both steps 4 and 5, you will need to know the latitude and longitude of your institution. Note 
that the Google Maps website has a new “Google Labs” feature that displays latitude and 
longitude. Go to http://maps.google.com/maps?showlabs=1 and enable the “LatLng Tooltip” 
option to use this feature to figure out your latitude and longitude. 

 

  



19 
 

Obtaining Publications 
 

In order for Profiles to automatically locate publications for people, you first need to provide a list 
of affiliation strings in the disambiguation_pm_affiliations table. These are phrases, which can 
include wildcard characters (“%”), that represent the most likely ways that your researchers will 
list their affiliations in Medline/Pubmed. Strings are not case sensitive. Selecting affiliation 
strings is somewhat of an art. The more precise the strings, the easier it is for Profiles to find 
publications. However, if the strings are too narrow in scope, Profiles might miss some articles. 
Examples of strings that we use at Harvard include: 

 
%Harvard Medical School% 
%Beth Israel Deaconess Medical Center% 
%BIDMC% 
%@hms.harvard.edu% 
%Children's Hospital%02115% 
 

Example: 
insert into disambiguation_pm_affiliations (affiliation) 
   values ('%Harvard Medical School%') 
insert into disambiguation_pm_affiliations (affiliation) 
   values ('%Beth Israel Deaconess Medical Center%') 
insert into disambiguation_pm_affiliations (affiliation) 
   values ('%BIDMC%') 
insert into disambiguation_pm_affiliations (affiliation) 
   values ('%@hms.harvard.edu%') 
insert into disambiguation_pm_affiliations (affiliation) 
   values ('%Children's Hospital%02115%') 

 

Examples of strings that we do not use at Harvard because they would be too broad are: 
 

%Beth Israel% 
%Department of Medicine% 
 

Once the person data is loaded, and you have entered your affiliation strings, run the 
PubMedDisambiguation_GetPubs job to call the Profiles Disambiguation Engine web service to 
find Medline/Pubmed articles for people.  

 



20 
 

 
 

Once this job has completed (typically several hours), you should run the 
PubMedDisambiguation_GetPubMEDXML  job. This job will retrieve the full xml for the pubmed 
articles and parse it in your local profiles instance.  

 



21 
 

 
 

 

 

 

There are a few important technical notes about the service: 

 

1. The service will take about 5 seconds per person on average, provided you are the only 
one using the service. If another institution is calling the service at the same time, the 
run time will be slower.  

2. The URL of the service is likely to change in the next few months. If you are unable to 
connect to the service, please contact us for details. 

3. It is possible to host your own local instance of this service. However, its hardware and 
storage requirements are significantly greater than the main Profiles database and 
website. For example, you will need to have a local copy of the entire Medline database, 
which is several hundred gigabytes. 

 

Below are a few general comments about the disambiguation engine: 

 

1. Although the affiliation strings help the service find publications, it does not limit the 
search. The affiliation strings are used to identify “seed” publications. These are 
publications that are most likely correct matches. The disambiguation engine then 



22 
 

searches all of Medline/Pubmed, using information about the seed publications, such as 
their titles, MeSH terms, coauthors, and journals, to find additional articles. 

2. All publications are assigned a match probability. By default, the disambiguation engine 
uses a 98% probability threshold, meaning it will only return publications that are very 
likely correct matches. You have the option of lowering this threshold. This will reduce 
the chances that correct publications are missed, but it will increase the chances that 
incorrect publications are added to people’s profiles. In general, select a low threshold if 
your goal is to create the “most accurate” profiles, meaning as many people as possible 
have close to correct publication lists. However, select a high threshold if your goal is to 
create the “cleanest” search results and passive networks. We set the default threshold 
high because it is easy for faculty (or their proxies) to add missing publications, but the 
website loses much of its value if the search results return the wrong people or if passive 
networks (e.g., top keywords, co-authors, similar people, etc.) contain meaningless 
information. Note that just a single incorrect publication can greatly alter a person’s 
passive networks, but even multiple missing publications will have far less effect 
because an expert in a field will have many other publications in that same area. To 
change the threshold, modify the @threshold variable value defined within the 
usp_GetPersonInfoForPubMed_xml stored procedure. 

3. Profiles will have the most difficulty with common names (e.g., J Smith), names with 
multiple parts (e.g., a hyphenated last name), names with foreign characters, and people 
who only recently joined your organization. We are continually working to improve the 
disambiguation engine to address these issues. 

4. If two or more people in your Profiles database share the same first name and last 
name, then this will lower the publication match probabilities for those people. This logic 
is defined in the usp_GetPersonInfoForPubMed_xml stored procedure when it calculates 
the value for the XML tag “LocalDuplicateNames”. 

5. The disambiguation process includes an optional parameter, “RequireFirstName”, which 
when set to true, will only find seed publications where the author’s entire first name (not 
just the initial) is used. If two or more people in your Profiles database share the same 
last name and same first name initial, then this parameter is set to true. There are other 
use cases when you might want to use this option. For example, young investigators 
(e.g., post-docs) have few publications before 2002, the year when Medline began 
including author first names. By requiring a first name match for these people, it should 
have little effect on correct publication matches, but it has the potential to eliminate older 
publications that might be incorrect matches. To add this or other custom logic to control 
the RequireFirstName paramenter, modify the code in the 
usp_GetPersonInfoForPubMed_xml stored procedure. 

6. Users or their proxies can manually edit their publication lists within Profiles. The 
disambiguation engine uses these modifications to improve its search. For example, if a 
publication was manually added, it will never be automatically removed. If a publication 
was manually deleted, it will never be automatically re-added. Manually added 
publications are used as additional seed publications for subsequent calls to the 
disambiguation engine. In other words, if users need to make corrections to their 
publication lists, Profiles will learn from this, and it will become more likely that future 
corrections will not be necessary. 

 

  



23 
 

Scheduling Database Jobs 
 

Run ProfilesYearlyJobs.sql manually once after the initial install of Profiles. It will only need to 
be run again if you update the mesh_* tables. NLM publishes a new version of MeSH once a 
year.  

 

The following jobs should be scheduled to run regularly:  

• ProfilesNightlyJobs.sql 
• ProfilesWeeklyJobs.sql 
• ProfilesMonthlyJobs.sql 
• ProfilesHourlyJobs.sql 

 

The names indicate suggested run frequencies. However, the more often you run these better 
since they are required to maintain consistency between the content in profiles (e.g., 
publications) and other aspects of the website, such as the search results and passive 
networks. ProfilesWeeklyJobs.sql and ProfilesMonthlyJobs.sql should ideally be run whenever 
ProfilesNightlyJobs.sql is run. The weekly and monthly jobs, though, take significantly longer to 
run than the nightly job, so it might not be practical to run all of these nightly if your database 
server is not fast enough.  

 

 
 



24 
 

 
 

The ProfilesHourlyJobs.sql runs independently of the others. However, there are dependencies 
among the remaining jobs, and they should be run in this order: ProfilesNightlyJobs.sql  
ProfilesWeeklyJobs.sql  ProfilesMonthlyJobs.sql. Also, if you plan to schedule 
usp_loadprofilesdata to update your person and user data (see below in the section on updating 
person data after go-live), then this should be done before ProfilesNightlyJobs.sql is run.  

 

  



25 
 

Installing the Website 
 

The Profiles beta website contains two main components that are comprised of a shared layer 
of developed and Microsoft class libraries: The two main components are the actual website, 
and a separate application for the Profiles web services.  The entire solution should contain the 
main website (ProfilesWeb) and the web service (Connects.Profiles.Service) with each project 
referencing the required class libraries. 

 

Solution name: 
 ResNavPeople 
 
Class Libraries:  

(Developed) 
 Connects.Profiles.Data 
 Connects.Profiles.BusinessLogic 
 Connects.Profiles.Common 
 Connects.Profiles.Utility 
 Connects.Profiles.Service.ServiceContracts 
 Connects.Profiles.Service.DataContracts 
 Connects.Profiles.ServiceImplementation 
 

(Microsoft) 
 FUA (Ajax file uploader) 

Microsoft Enterprise Library 
 
Website: 
 ProfilesWeb 
 
Web Service: 
 Connects.Profiles.Service  (API and Network Browser Service) 
 
Installation steps: 

 

Profiles is designed to run as two different web sites or as two virtual directories on a single 
server IIS instance or across two different server instances.  If you are hosting the Profiles web 
application and Profiles web service on two different servers, then certain steps listed below will 
need to be performed on both servers.  This document does not cover custom security 
requirements and assumes the IIS defaults are used for public/Anonymous access. 

 

1. Ensure Microsoft .Net version 3.5 is installed on all web servers used to host the profiles 
system.  

2. From the web server command prompt run the following utility, including the full path: 
C:\Windows\Microsoft.NET\Framework\v2.0.50727\aspnet_regiis.exe –i 

• This path might be different depending on a 32 vs 64 bit operation system. 



26 
 

3. Open the web server file explorer and provide the [ServerName]/IIS_WPG local server 
user account with read/write permissions for the 
“C:\Windows\Microsoft.NET\Framework” directory and subdirectories. 

4. Open IIS version 6.0 or greater and create a virtual directory called Profiles and map its 
physical location to the drive and directory that will host the physical web files. 

• This step can be setup as a standalone website or sub web of existing website.  
Please consult your IT staff or IIS Administrator for what options are available to 
you if you are working on shared resources. 

• Please ensure that your web site or virtual directory is setup with execute scripts 
only access. 

• Ensure that your virtual directory is setup as an Application. 

5. Create a second virtual directory under the default website root called ProfilesService 
and map its physical location to the drive and directory that will host the 
Connects.Profiles.Service physical web service files. 

• This step can be setup as a standalone website or sub web of existing website.  
Please consult your IT staff or IIS Administrator for what options are available to 
you if you are working on shared resources. 

• Please ensure that your web site or virtual directory is setup with execute scripts 
only access 

6. Publish or place the ProfilesWeb project files into its physical location for hosting. 

7. Publish or place the Connects.Profiles.Service project files into its physical location for 
hosting.  

8. From the web server file explorer, navigate to the physical location of the ProfilesWeb 
hosted files and provide the [ServerName]/IUSR account read access. Then provide the 
[ServerName]/IIS_WPG local server user account with read access to the same location. 

9. From the web server file explorer, navigate to the physical location of the 
Connects.Profiles.Service web service hosted files and provide the [ServerName]/IUSR 
account read access.  

• For IIS6.0 provide the [ServerName]/IIS_WPG local server user account with 
read access to the same location. 

• For IIS7.0 provide the [ServerName]/IIS_IUSRS local server user account with 
read access to the same location. 

10. The Profiles web site and web service are designed to be hosted as a compiled 
application, or as raw source code files for JIT compile on activation of the first user.  

• For hosting as a compiled application you will need to load the solution into the 
IDE, and then perform a release build of the entire solution. 

1. Review all messages and outputs of the compiler to ensure all references to 
required class libraries are in place.   

2. Publish Connects.Profiles.Service to its target hosted location.   

3. Publish the ProfilesWeb project to its target hosted location. 

• For JIT Compile on activation of the first user. 



 

11. E
O

12. If 
H
.s

 

1. Co
loc

2. Co
ph

Edit the Conn
Other settings

f you are hos
Handler Map
svc file exten

• Doubl
applic

• Right 
“Add S

• The a
a 64 o

• After p
Mapp

opy and pas
cation. 

opy and pas
hysical hosti

nects.Profile
s should be 

sting the Con
pings by usi
nsion and all

le click on th
cation. 

click in the s
Script Map” 

aspnet_isapi
or 32 bit OS 

pressing OK
ings and sel

ste the Profil

ste the Conn
ng location.

s.Service  w
left as defau

nnects.Profi
ng the aspn
low the RES

he Handler M

screen that d

.dll executab
version. 

K, right click 
lect “Add Wi

27 

esWeb folde

nects.Profiles

web.config fil
ult. 

les.Service 
et_isapi.dll.

STful URL st

Mapping icon

displays the 

ble you map

in the scree
ildcard Map”

er contents t

s.Service fol

le for the cor

on IIS7.x yo
 This will en

tyle of the W

n for the Con

list of all cu

 to will depe

n that displa
”. 

to your phys

lder contents

rrect connec

ou will need t
nable IIS to r

WCF request.

nnects.Profil

rrent Mappin

end on if you

 

ays the list of

sical hosting 

s to your 

ction string.  

to add two 
recognize th
. 

les.Service 

ngs and sele

u are installin

f current 

e 

ect 

ng on 



 

13. If 
a
3

 

14.  E

 

f you are inst
pplication. (T
2-bit version

II

In

Edit the Prof

• Co

• Ap
inc

• Ap
fo

• Ap

talling Profile
The membe
n of System.

IS7: 
• Go to A

32-bit 
 

n IIS6: 
• Click S
• Type t

cscrip
SET W3

• Type t
(32-bit
%SYSTE
egiis.

• Make s
set to A
Servic

filesWeb we

onnection st

ppSettings.U
clude a clos

ppSettings.H
r the profiles

ppSettings.P

es on a 64-b
rship/user fr
Data.SQLite

Application P
applications

Start, click R
he following
pt %SYSTEM
3SVC/AppPo
he following
t) and to inst
EMROOT%\Mi
.exe –i 
sure that the
Allowed in th
es Manager

eb.config file 

tring: connec

URLBase: ne
ing backslas

HomepageU
s website. Ex

ProdHost: ne

28 

bit machine, 
ramework us
e.) 

Pools->Prof
s = True 

Run, type cm
g command t
MDRIVE%\ine
ools/Enable
g command t
tall the script
icrosoft.NE

e status of A
he Web serv
r. 

for the follow

ctionStrings.

eeds to refle
sh.   Exampl

rl: needs to 
xample: http

eeds to be se

you need to
sed by Profil

iles->Advan

d, and then 
to enable the
etpub\admi
e32bitAppO
to install the 
t maps at the
ET\Framewo

ASP.NET ver
vice extensio

wing items:

.ProfilesDB

ect the full UR
le: http://[Do

reflect the fu
p://[Domain]/

et as localho

 

o set IIS to e
les has a de

ced Settings

click OK. 
e 32-bit mod
inscripts\a
OnWin64 1 

version of A
e IIS root an
ork\v2.0.50

rsion 2.0.507
on list in Inte

RL of the pro
omain]/Profile

ull URL of th
/ProfilesWeb

ost. 

enable 32-bit
ependency o

s and set En

de: 
adsutil.vb

ASP.NET 2.0
nd under: 
0727\aspne

727 (32-bit) 
ernet Informa

ofiles websit
esWeb/  

he default pa
b/Home.aspx

t 
on the 

nable 

bs 

0 

et_r

is 
ation 

te to 

age 
x 



29 
 

• AppSettings.ConnectsLoginURL: login screen for the edit enabled profiles 
functions.  Example: http://[Domain]/ProfilesWeb/Login.aspx 

• AppSettings.AfterLogoutURL:  redirect page you want your user to be taken 
to once they have logged out of profiles. 

• AppSettings.DefaultPersonImageURL: the default image that will show in the 
event a photo of a person does not exist. 

• AppSettings.ProfileResponseXSD: Path of xml schema if schema validation 
is required. 

• AppSettings.GoogleMapCenterLatitude: used to center the default of all 
network maps.   

• AppSettings.GoogleMapCenterLongitude: used to center the default of all 
network maps. 

• AppSettings.HideInstitutionSelectionForSearch: used to hide the institution 
field from the search options. 

• AppSettings.HideDepartmentSelectionFromMiniSearch: used to hide the 
department option from the mini search options. 

• AppSettings.NetworkBrowserService: the full url of the deployed 
Connects.Profiles.Service Network Browser to include search method and 
closing backslash.  Example: 
http://[Domain]/ProfileService/NetworkBrowserService.svc/profiles/ 

• RoleManager.Providers: change the application name to the full path of the 
Profiles application to include closing backslash.  Example: 
http://[Domain]/ProfilesWeb/ 

 

Once the web config files are edited correctly, browse to the home page of profiles. If the error 
page displays in place of the home page, review the server event log for any details that will 
need to be addressed before proceeding. 

 
  



30 
 

Website Authentication Options 
 

The Profiles web site utilizes the membership provider model built into Internet Information 
Server (IIS) as a means for authentication that is flexible and extensible to many different 
environments. 

By default, Profiles uses basic IIS forms authentication that has been modified to utilize the 
[user] table in the Profiles database.  This functionality is encapsulated in a default provider 
called “ProfilesDBMembershipProvider” that is defined in a class found in the App_Code folder 
of the Profiles web site. 

Profiles installations that wish to integrate their own existing authentication mechanism can 
simply build their own C# class that inherits from System.Web.Security.MembershipProvider 
and include a reference to this provider in the web.config on their site.  The settings can be 
found in the <membership> section of the web.config. 

 

When developing a provider class that inherits from a built-in class, you typically override those 
methods that you wish to customize and control.  Each installation will vary, but in most cases 
the ValidateUser and FindUserByName methods will need overrides in the custom provider 
class. 

In the case of installations where a Single Sign-On (SSO) solution is desired, the authentication 
is performed outside of Profiles and what is typically required is a mechanism for handling the 
“callback” from the SSO system back to Profiles.  The requirement here is that the SSO system 
validate the user and on the return, the core ASP.NET Profile attributes be filled with data from 
the SSO system.  Depending on the SSO system, this information may be available on the 
QueryString, HTTP header or a cookie.   The ASP.NET Profile attributes to be set can be found 
in the web.config in the <profile> section. 

 

  



31 
 

Modifying the Website’s Look-And-Feel 
 

The ProfilesWeb site is based on asp.net technology with a presentation layer comprised of .Net 
Master pages, HTML, CSS, .Net controls and .Net user controls. 

• CSS: A folder called CSS exists under the ProfilesWeb project root.  It contains 8 css 
files and one HTC support file for custom styles.   

• Images: A folder called Images exists under the ProfilesWeb project root.  This contains 
all image media content for the ProfilesWeb site.  Many images are used for borders and 
navigation in conjunction to CSS styles. 

• .Net controls: Pages and user controls will contain one or more controls that deal in the 
rendering of HTML.  

• Master Pages: ProfilesWeb uses two Master Pages to define the layout of the site and 
each child page. ProfilesPageBase.master creates the layout for the header, footer and 
main body columns. ProfilesPage.master creates the layout of the details shown in each 
page (IE the menus,widgets and containers for each child page). 

 
  



32 
 

Updating Person Data After Go-Live 
 

If you have frequently changing HR data, you can setup a recurring data load process. Each 
time you want to update Profiles, enter new data into the loading tables, and then execute the 
stored procedure usp_loadprofilesdata. For people or users who are already in Profiles, their 
data will be updated, but their PersonIDs and UserIDs will remain the same.  If a person or user 
no longer appears in the loading tables, then the active flag in the Profiles database will be set 
to false, and their profiles will no longer be visible. 

 

  



33 
 

Proxies 
 

Proxies are users who can permission to edit other people’s profiles. There are two types of 
proxies, “designated” and “default”. Designated proxies are people faculty assign to edit their 
profiles. Access is all or nothing, meaning if you assign someone as a designated proxy, he/she 
has full access to your profile. 

 

Default proxies are "superusers" who have access to a large number of faculty by default. 
Default proxies can either be visible or hidden. When faculty go to their proxy page in Profiles, 
they can see any visible proxies who have access to their profiles. They cannot see the hidden 
default proxies. Default proxies can be assigned to multiple departments, institutions, or 
everyone. There are granular editing permissions for default proxies. For example, they can be 
allowed to edit everyone's publications, but only the photos for a particular department.  

 

Default proxies must be entered directly into the database in the proxies_default table. The 
“proxy” field in this table is the proxy’s Profiles UserID. The department and institution fields can 
either be empty strings, or a value can be given to either one to limit the population that can be 
edited by the proxy. The IsHidden field is “Y” if the person is a hidden proxies, and “N” 
otherwise. The “Edit” fields should be set to “1” if the proxy has permission to edit that content, 
and “0” otherwise. A single proxy can have multiple records in this table, where each record 
indicates scope and permissions for a different population of profiles. 

 

Note that all proxies, both designated and default must have a record in the user table. 

 

  



34 
 

Federated Search (DIRECT) 
 

Distributed Interoperable Research Experts Collaboration Tool (DIRECT) is a pilot project 
facilitated by the Research Networking Working Group of the NIH-supported Clinical & 
Translational Science Award (CTSA) Consortium to provide federated search across multiple 
institutions using different research networking tools. For more information about DIRECT, visit 
http://direct2experts.org.  

 

Profiles now includes support for DIRECT, though it is disabled by default. In order to enable 
this feature, uncomment the following keys from the web.config file: 

<add key="DirectServiceURL" 
value="http://[YourDomain]/[YourProfileSubWebName]/DirectService.aspx"/> 
 
<add key="DirectPopulationType" value="[Description of the population (e.g., 
faculty, staff, etc.) loaded into your instance of Profiles.]"/> 
 
<add key="DirectQueryTimeout" value="15"/> 

 

Replace the variables (in brackets) with the appropriate values. The database table FSSites lists 
the URLs of other DIRECT sites. This list changes frequently. Visit the direct2experts web site 
to learn how to join the mailing list to obtain the latest URLs. 

  

  



35 
 

Software Updates 
 

If you are applying this update to an existing install, we recommend that you do the following: 

 

1. Back up your existing web.config files first, and then re-apply them after you copy the 
new web code to your server to preserve previous settings. 

2. If you have previously made customizations to the code, re-apply those changes to the 
new code rather than simply replacing the new files with your modified ones. 

3. Stop and restart the IIS Application Pool to ensure the cache from the previous version 
of Profiles has been cleared. 

 

We will be releasing bug fixes as they are identified for the next few months, but no major new 
features are planned for this current beta codebase. Profiles 1.0, which will replace the beta 
software, will be a complete rewrite. It will have a more modular architecture, enabling us to 
include many new features and to begin collaborative development with others who would like 
to participate in the open source project. 

 

 

 

  



36 
 

Release Notes 
 

5/5/10 Fixed bug in cache_person update process that did not calculate 
cache_person.NumPublications correctly. 

5/10/10 Fixed bug in usp_LoadProfilesData related to how the department table is populated. 

6/20/10 Bug Fixes: 

1. The co-author radial network browser does not load. 

2. When a collaborator is deleted from the active network details page, it doesn't 
get removed from the left sidebar. 

3. Clicking the link to view all people in one's department in the right sidebar 
(passive network) returns all people in the entire database. 

4. Keyword categories page does not display all categories. 

5. Inconsistent behavior across browsers with auto-complete on the main 
search form. [This feature has been removed for now.] 

6. Back link on a person's profile to return to search results is broken. 

7. Connection strength information on search results detail page is confusing. 
[The connection strength value has been removed for now.] 

8. Faculty rank, not the affiliation title, is appearing as a person's title. 

9. Faculty ranks are hard-coded in the website instead of being dynamically 
read from the database. 

10. usp_loadprofilesdata - departments table isn't populated correctly during the 
load process. 

11. Permissions are not set correctly for the default database application user 
account. 

12. API does not handle secure mode and the isvisible person flag correctly. 

13. Pubmed disambiguation process crashes if data is requested for a publication 
that has been deleted from Medline. 

14. Search breaks if API cache tables are not purged. [Clear API cache tables 
process was added to the nightly database job.] 

15. CSS fixes are needed for IE 6. 

  

New Features: 

1. Added global error logging to server event log and uniform custom error 
message display. 

2. Added weightcategory tag to keyword XML (for use on keyword cloud page). 

3. Added academicrank tag to person XML (a derived person level indicator of 
that person's highest faculty rank). 

4. Created optional script ProfilesSetUserPermissions.sql to grant execute 
permissions to new database accounts. 



37 
 

  

Cosmetic: 

1. usp_getusersupporthtml - added a wrapper div when edit mode = 1. 

2. usp_parsepubmedxml - cleaned up code related to calculating a publication 
date. 

3. fn_getuserdepartmentpeople - cleaned up code to better use cache tables. 

4. Changed default database application user account to AppProfilesUser with 
password Pass1234. 

 

6/25/10 Bug Fixes: 

1. ProfilesNightlyJobs.sql fails. 

2. View all people in a department returns the wrong list in certain cases. 

3. Radial network browser is not working on certain browsers. 

4. Google Map visualizations does not display markers for all people. 

5. Page layout is incorrect on IE6 and IE7 due to CSS handling differences from 
other browsers. 

6. Number of matching keywords on the Search Results “Why?” Connection 
page is incorrect for multiple keyword searches. 

 

7/15/10 Bug Fixes: 

1. Pagination is not working on the Search Results page when more than 15 
items per page is selected. 

2. Searches for names or keywords containing an apostrophe (O’Brien, Baker’s 
Yeast) are not working. 

3. IE 6 style conflict is causing Edit Profile page to indent far to the right. 

4. Upload photo does not work on the Edit Profile page. 

5. List view for Keywords Cloud tab redirects to Co-Authors List View tab. 

6. usp_UpdateUnGeocodedAddress fails. [Changed to use addressstring, 
instead of derived address string.] 

7. Exact Keyword search is not functioning as expected for multiple word 
phrases. 

8. Clicking a “most viewed” item on the search page does not run an exact 
keyword search as expected. 

9. The highest overall faculty/academic rank, rather than the rank of the primary 
affiliation should be displayed. 

 

7/22/10 Bug Fixes: 



38 
 

1. usp_memebership_getpassword assumes that all users records have 
user.applicationname = ‘Profiles’.  This results in login failures for all users. 

2. A user who clicks the “Most Viewed” keywords lists in the passive network 
margin, will trigger double quotes to wrap around the keywords, causing the 
counts to be incorrect in the search_history_kw table.  

3. Trying to upload a photo while editing a profile fails. 

 

8/9/10 Bug Fixes: 

1. Dynamic Javascript in ProfilesEdit.aspx.cs is causing Javascript browser 
errors for IE 6.0 clients viewing profiles from IIS 6.0 servers. 

2. Incorrect physical neighbors. [Added latitude and longitude to logic for 
determining physical neighbors (usp_cache_physical_nieghbors). Added 
indexes to cache_person for these columns to improve performance.] 

3. Changed column/primary key for person_add table to internalusername. 

4. Search returned an error if the same query had been done more than 24 
hours earlier and the nightly jobs were not run. [Removed a date check in API 
(usp_getpersonxml_v2), which was used to retrieve cached query results.] 

5. Removed mpid foreign key constraint on publications_add and 
publications_exclude as there is the possibility of null values.  

6. API code is not reading IsSecure appSettings key in web.config file. 

7. API does not allow search by InternalID. 

 

10/27/10  Bug Fixes: 

1. <dataConfiguration defaultDatabase="ProfilesDB"/> in line number 35 of the 
web.config file was incorrectly listed as <dataConfiguration 
defaultDatabase="[DB Name Here]"/>  [This value needs to be set to 
ProfilesDB and match the ConnectionString key name of ProfilesDB.] 

2. CoAuthorNet.aspx.cs: the inline test for if an address was null or the Latitude 
equal to zero causes a null exception error in the event address was equal to 
null.  [This was corrected by splitting the test into two ‘if’’ statements, first test 
if pList.Person[0].Address != null then inside this condition, test if 
pList.Person[0].Address.Latitude == 0.] 

3. When calling the Profiles API web service, the Response message is not 
returning the InternalID list.  [The bug was in the project 
Connects.Profiles.Service.DataContracts, file name InternalId.cs, line number 
56.  The DataContract name was spelled with the incorrect case.  The name 
should be InternalIDList with a capital “ID”.  The same applies to the 
DataMember name and Serialization.XMLElementAttribute in this file.] 

4. Secure Socket (HTTPS) causes an error that prevents client side Ajax to 
execute and page content to display. 

5. When you add a designated proxy to your profile and you search by 
institution, it never returns any records. [Changed usp_searchproxy to 



39 
 

remove the sub query select of {select name from institution_map where 
catalystname = @xInstitution} and changed it with {InstitutionFullName = 
@xInstitution} 

6. usp_ProxySearch does not check for isActive status of the user. [Added AND 
isActive = 1 to the WHERE clause of usp_ProxySearch. 

 

New: 

1. vw_person preference defaults changed from Y to N for showphoto, 
showawards, shownarrative. 

2. Added BSD license and Copyright header to all Web and Database code. 

3. usp_GetPersonList_xml_V2 – added a join to the display_prefs table. Profiles 
will now use the display_prefs table directly instead of cache_person to 
enable user privacy settings to have an immediate effect. 

4. usp_cache_sna_betweenness changed so that it is now calculating the exact 
betweenness score rather than an approximation.  

5. usp_parseallpubmedxml proc changed to avoid foreign key conflicts when 
replacing pubmed data that already exists in publications_include. 

6. usp_loadprofilesdata – changed default value of isactive column to 1 (active). 

11/18/10  Bug Fixes: 

1.  Exception message: Could not find stored procedure 
'dbo.aspnet_Applications_CreateApplication'. [This bug was introduced in the 
last release and has been fixed.] 

2. In ProfilesSetUserPermissions.sql, the AppProfilesUser account does not 
have a sysadmin role. 

3. In usp_LoadPMPublications_include the check to remove orphaned pubs 
didn’t include publications_add. The result was that publications that were 
added were removed from publications_include after a disambiguation 
process. 

12/20/10 Bug Fixes: 

1. Inactive users are able to log into profiles. [A correction has been made to the 
usp_membership_getuserby name and usp_membership_getpassword 
stored procedures to check if the user is active.] 

2. If the user does not have a profile they receive an error after trying to log on.  
[ We now direct the person to the search screen if they try to log on and do 
not have a profile in the system.] 

3. The proxy feature is not working correctly.  I do not see my proxies after I add 
them to my profile. [A correction has been made for the display of Designated 
Proxies and Default Proxies so the correct parameters are passed into the 
usp_getproxies.] 

4. The left sidebar was shifted to the right when viewing a profile with more than 
one affiliation. [Added a missing <Table> tag to the Separator Template in the 
repeater control in ucProfileBaseInfo.ascx] 



40 
 

5. The PubMed disambiguation process can fail if it is run after users have 
manually added publications to their profiles. 

6. The PubMed disambiguation process occasionally failed unexpectedly. [The 
timeout on the Harvard-hosted disambiguation server was increased.] 

7. Google Map for Similar People does not correctly display connections 
between people. [Issue was related to a bug in usp_getgmapusersimilar.     
There is a join from personid to userid in the main query. This was corrected 
to be personid to personid.] 

3/17/11     Bug Fixes: 

1. When user that does not have a profile selects “Edit my profile” from the 
active network menu, then logs into Profiles, a system error message is 
displayed.  [A “ProfileExists” flag was added to the UserPreferences class.  
Then a test for ProfilesExists takes place in the OnLoad event of 
ProfilesEdit.aspx.cs file. If a user does not have a profile, the request is 
redirected to the Search.aspx page.] 

2. When compiling the ProfileWeb project an error that License.txt is not part of 
the project occurs.  [The Profiles project file meta data has been updated to 
reflect the correct the current BSD license.] 

3. When running disambiguation jobs, packages sometime, intermittently 
timeout. [This is resolved by increasing the HTTPWebrequest object’s 
timeout, in the script task, to 900,000 milliseconds or 15 minutes. ] 

4. In certain situations, searching for proxies would return inactive users. [This 
has been resolved by adding an isactive check in usp_getproxies and 
usp_proxysearch, for those cases.] 

5. InternalLDAPUsername field length is too small. [Field length increased to 50 
characters throughout the database.] 

6. SQL Packages fail in SQL Server 2008. [Separate packages for SQL Server 
2005 and 2008 are now available.] 

7. Hide and show functions for Institution, Department, Division are not 
consistent between Mini Search and Search.  Profiles now has 6 Flags to 
maintain the display of the 3 drop down controls on all search functions. 

  <add key="HideInstitutionSelectionForSearch" value="false"/> 
  <add key="HideInstitutionSelectionForMiniSearch" value="false"/> 

      <add key="HideDivisionSelectionForSearch" value="false"/> 
        <add key="HideDivisionSelectionForMiniSearch" value="false"/> 

  <add key="HideDepartmentSelectionForSearch" value="false"/> 
               <add key="HideDepartmentSelectionForMiniSearch" value="false"/> 

New: 

1. Search by Division has been enabled for both the mini search and the main 
search screen. 

2. The federated query tool DIRECT has been added as an optional function to 
the Profiles Beta. See the above section on DIRECT for more information. 

7/22/11     Bug Fixes: 



41 
 

1. Users would delete publications from their profiles, but they would be added 
back during the next automated disambiguation run.  

2. The back-end process for adding publications fails if the database user is not 
give DDL permissions. [The code was changed so that standard read/write 
permissions are sufficient.] 

3. The automated disambiguation process fails if users had previously added 
custom publications to their profiles. 

4. Google maps sometimes displays the people at the wrong address. 

5. Google maps sometimes does not display a pushpin. 

6. When editing a previously-added custom publication, the publication type 
reverts to “Abstract” and other data fields disappear. 

7. Manually adding publications using multiple authors fails in Firefox. 

8. Letters ‘kj’ show up under “Most Viewed This Month”. 

9. On the search results page, when you mouse-over any researcher, the right 
pane display is switching the title and faculty rank values. 

10. A user with profile does not always get the profile-owner menu. 

New: 

1. The source code has been moved to a Subversion repository hosted by 
Recombinant Data Corp. 

2. A data validation stored procedure has been created to check the data in the 
loading tables. 

3. The ability to hide a person’s email and/or physical address has been added 
to the Edit Profile page. This feature is configurable via the web.config. 

 

 

  



42 
 

Known Issues 
 
1. Certain browser security configurations (we haven’t determined the exact settings) disable 

the JavaScript used by the drop down menus on the main search page to select More 
Options. 

2. Selecting “Display Columns:” in the search results by clicking on the column name and not 
the checkbox fails to trigger a repost of the page. 

3. Long item names in Passive Networks (right sidebar) are truncated. 

4. The height of the More Options drop down menu on the search page does not dynamically 
adjust based on the number of items displayed. 

5. When two browser windows or tabs are opened at the same time to Profiles, it can create 
inconsistencies with internal session variables. This can be reproduced by running a search 
in window #1, then running a different search in window #2, then clicking the “Why?” link in 
the search results of window #1. 

6. When editing a profile in Mac FireFox or Mac Chrome, users cannot add new awards. 

7. Network View sometimes fails to load in Mac Opera. 

8. Uploading of profile photos on ProfileEdit.aspx causes a javascript/AJAX permission denied 
error if the client browser is IE 6.0 and the web server is IIS 6.0 

9. Rarely, certain PubMed articles cause the disambiguation process to hang or fail. 

 

 

  



43 
 

Acknowledgements 
 

Profiles Research Networking Software was developed under the supervision of Griffin M 
Weber, MD, PhD, with support from Grant Number 1 UL1 RR025758-01 to Harvard Catalyst, 
The Harvard Clinical and Translational Science Center from the National Center for Research 
Resources and support from Harvard University and its affiliated academic healthcare centers.  

 

Harvard Development Team 

The software implementation is led by the Harvard Medical School Information Technology 
Department. The current and past members of the development team include Nick Benik, 
Niraj Desai, Paul Gomez, John Halamka, Ken Huling, Shashank Jain, Melissa Kenny, Kevin 
Laitinen, Kellie Lucy, Krishna Nellutla, James Norman, Rob Piscitello, George Rakauskas, 
Jeff Rosen, Michele Sinunu, Franco Valentino, Marlon Violette, Griffin Weber, and Steve 
Wimberg.  

 

UCSF Development Team 

The UCSF Profiles team includes Mini Kahlon, Eric Meeks, Kristine Moss, Rachael Sak, and 
Leslie Yuan. UCSF has developed innovative promotional strategies for research 
networking, assisted with quality assurance, and are adding OpenSocial support to Profiles 
RNS. Mini Kahlon is co-chair with Griffin Weber of the National CTSA Research Networking 
Group, which is leading the efforts to create a national pilot to demonstrate interoperability 
among different research networking platforms. 

 

Recombinant Data Corp. 

The Profiles RNS team at Recombinant Data Corp. includes Kimber Barton, Peter Emerson, 
Dan Housman, Mike Klumpenaar, Mark Mischke, Matvey Palchuk, and Nancy Pickard. 
Recombinant provides commercial support for Profiles RNS, hosts publication 
disambiguation services, develops administrative tools for Profiles RNS, and writes 
documentation (including portions of this install guide) and marketing materials. 

 

Profiles RNS Users Group 

We thank the member institutions of the Profiles RNS Users Group for their willingness to be 
early adopters of the software and their continued feedback. For a list of member sites, 
please visit the Community page on http://profiles.catalyst.harvard.edu. 

 

 
  



44 
 

More Information 
 

For more information about Profiles RNS, please visit 

 

http://profiles.catalyst.harvard.edu 

 

The Harvard development team can be reached at profiles@hms.harvard.edu. We will try to 
reply promptly, though we cannot guarantee that we will be able to answer all questions. 

 

Commercial support options are available through Recombinant Data Corp. Harvard has no 
financial relationship with Recombinant, but we recommend them as an Authorized Service 
Provider for Profiles RNS. For more information, contact Recombinant at 
results@recomdata.com or call (617) 243-3700. 

 

 

 


