Profiles Research Networking Software
Architecture Guide

Documentation Version: December 18, 2025

Software Version: ProfilesRNS 4.0.0

Table of Contents

T (o (U1} i o] o WU PSP PP PR TP PP 2
(070 gTe7=T o] (1 F= 1IN 1Y, Lo =Y PP SRURPRURP 3
Profiles, Networks, and CONNECHIONScoouuiiiiiiii e 3
Passive & ACHIVE NEIWOTKS ... e e 4
WeDbSite ArChItECIUrEo 5
WEDSIHE FramMEWOTK. e ittt eeeeseennnenee 6
Y o] o] o= (o] 1< 3 8
MOAUIES ... 9
Database ArChItECIUre.ooiiiiiiiiiiiiiiiieiee ettt 12
SCNEMAS OVEIVIEW......cciiiiiiiiiiieee e 12
COrE SCNEMAS.....ceeeeeei ettt e e e e e ettt e e e e e e et n et e e e e e e e e nnenees 13
EXtended SChEmMAS ... 13
(O] (I D = £= o= 1= T @] o] [T o £ 14
SECUIMEY GIOUPS....eiiiiiiiiie ettt e e e eeees 17
Node and Triple TabIES ... e e e e e e e e e e eaeans 18
DAtA FIOW ... 19
(O]9 (o] [oTe 1A o o T=T 0 4 F= T IF=T o) 21
Loading Data Using ProcessDataMap..........ccooooiiiiiiiii i 23
Loading Data Using ProCessTriples........ooo oo 25
Extending Profiles RNS ...t e e 25

Introduction

This document contains three parts:

1)

Conceptual Models — Both the Profiles RNS website and database are organized around
of concept of Profiles, Networks, and Connections, which build on the triple structure of
RDF. Networks are further divided into ones that are automatically derived (Passive) and
those which users create themselves (Active). These conceptual models provide the
rationale for much of the architectural design of Profiles RNS.

Website Architecture — This section provides a basic overview of how the website
Framework is designed. It also describes Applications, which extend the Framework,
and Modules, which the Applications use to provide specific functionality.

Database Architecture — As an ontology-based system, the database plays a greater
role in Profiles RNS than in most software. The database includes not only the RDF
triple store, but also the ontology, data feeds, and business logic. This section of this
guide describes the key components of the database and concludes with a brief tutorial.

For information about the VIVO Ontology, which Profiles RNS uses to encode data in RDF, see
the ProfilesRNS_APIGuide.pdf file.

Conceptual Models

Profiles RNS pioneered two conceptual models, “Profiles-Networks-Connections” and “Passive
& Active Networks”, which make the software unique among research networking platforms by
(1) providing three ways of viewing and exploring RDF data, and (2) providing two ways of
generating new triples.

Profiles, Networks, and Connections

Profiles RNS introduces a novel concept called Profiles, Networks, and Connections. Consider
the RDF triple in which “John”-“has published with”-“Charles”. In other words, John and Charles
are co-authors. By itself, this is a simple fact, but for a user of the Profiles website, it leads to
three types of more complex questions:

1. Who is John? To answer this question, Profiles contains “profile” pages dedicated to
each entity, which lists its various RDF properties. John’s profile page might include
properties such as his name, title, affiliation, contact information, photograph, and a
research narrative.

2. Who are John’s co-authors? This question explores one of John’s RDF properties, “has
published with”, in more depth. A profiles “network” page lists an entity and all the other
entities that are connected to it through a particular property, along with additional
information about those connections. In other words, it displays all RDF triples that have
a given subject and predicate. There are many ways to present a network to users,
depending on exactly what they want to know about that network. For example, a
geospatial visualization of the network can show whether John’s co-authors are mostly
located in one city or spread across different geographical regions, and a temporal view
of John’s co-authors show how his collaborations have changed over time.

3. How are John and Charles connected? This question is about the particular co-
authorship relation between John and Charles. How many articles have they published
together? When were these articles published? Who was the first author on those
articles? What were the topics of those articles? Profiles contains “connection” pages,
which enable users to view any metadata associated with a single RDF triple. This is
especially useful for Profiles’ derived “passive” networks. For example, Profiles
automatically creates a “similar research” connection between investigators if their
publications have a certain number of Medical Subject Headings (MeSH) in common.
The connection page lists those subject headings.

The diagram below illustrates the differences between Profiles, Networks, and Connections. On
the Profiles website, the three circular icons indicate to users which of the three types of pages
they are viewing. The Profile icon has a large center circle with a thin outer ring around it. This
represents the fact that the page is primarily about the entity, with only a sample of the
surrounding networks being shown. The Network icon has a small center circle with lines
connecting it to the outer ring. This represents the fact that the page is more about the
surrounding entities. The Connection icon has two circles connected by a thick line to show that
the page is about a particular triple.

@ Profile

A

1 Has Published With

- —>

! (Co-Author)
@ Network
\ \

Has Published With ;

l' (Cd.-Author)
7 1

—~ .
@—® Connection
h

Passive & Active Networks

"Passive" and "Active" networks build upon the raw RDF data loaded into Profiles by creating
new types of triples. This not only enables the website to be a more useful and exciting tool on
day one, but it also allows users to expand its content with information about social networks
that only they know.

e Passive networks are automatically derived from existing RDF data, such as co-
authorship history, organizational relationships and geographic proximity. It extends
these networks by discovering new connections, such as identifying "similar people" who
share related keywords. Offering these additional suggestions, Profiles RNS can lead
users to unexpected opportunities for collaboration and new sources of expertise.

e Users can manually create active networks by identifying advisor, mentor and
collaborator relationships with colleagues. Profiles RNS will soon support the
OpenSocial standard, which will let researchers use the same types of plug-in
collaboration gadgets found on LinkedIn and Google within their active networks.

Website Architecture

Profiles 4.x.x versions represent a transitional state between Profiles 3.1.0 and Profiles 5.x.x.
Profiles 3.1.0 is built in .Net 4.8.1, which is currently receiving legacy support from Microsoft.
After .Net 4.8.1, Microsoft moved to .Net Core 1, which discontinued support for the server side
rendering that underpins the entire Profiles site. This means that upgrading versions of .Net
requires the front end of Profiles to be rewritten. Profiles 4.x.x versions will continue to be built in
.Net 4.8.1, but will incrementally rebuild the site in an architecture that is compatible with the
current versions of .Net. Once this incremental process is complete, Profiles 5.0.0 will be
released, built in the latest version of .Net.

During this intermediate stage this document will describe both architectures.

Profiles 4.0.0 is the first step in this incremental process. In version 4.0.0 the public parts of the
website use the modern 4.x.x framework and parts behind login use the old framework.

Profiles 4.x.x Website Framework

Profiles 4.0.0 contains a brand new front end. This consists of a Ul layer written in HTML,
Javascript and CSS, and API layer written in C# .Net which queries a new [Display.] schema in
the SQL Server database.

When a user enters a Profiles URI into the web browser, the following events occur:

1. If needed, a 303 redirect sends the user to a URL that corresponds to the primary alias
of the page.

2. The Profiles 3.x.x routing system determines which application should handle the
request.

3. The <application>/Default.aspx file Page_Load function is called to handle the request.
The rest of this section describes page handling in the Profile application (which handles
all Profile, Network and Connection pages in profiles). Handling or requests by other
applications is essentially a subset of this process.

4. The application code calls [Display.].[GetDataURLs] in the database with the Subject,
Predicate, Object, Tab, and Session ID. The following values are returned from this
procedure:

a. ValidURL: A bit that represents whether the URL is valid
b. PresentationType: An integer that represents the PresentationID from
[Ontology.Presentation].[XML]
c. Tab: Returns the tab — unused by the application
d. Redirect: A bit that represents whether this is the preferred URL for the page, or
whether a 303 redirect should occur. This is unused by the current application,
because redirect is performed in step 1. It is kept as it is used for routing in the
Prototype .Net 8.0.0 version of Profiles, which will likely form the basis for
Profiles 5.0.0.
e. RedirectURL: The Preferred URL if Redirect is true.
DataURLs: The parameters to use when calling the JSON api to get the data for
this page.
g. CanEdit: Bit representing whether the current user has edit access to this page.

—h

h. Botindex: Bit representing whether bots should index this page. If configured bots
will be served a no-index page. This page includes a <meta name="robots"
content="noindex"> tag which tells the robots not to index it, and does not call
JSON api to get page data. This can provide a significant reduction in server
load.

i. LayoutData: JSON object letting the page know which modules should be
loaded, and providing minimal data to allow the initial page load to be fast but
with an appropriate layout, and key data such as a researchers name.

5. The Display application selects an HTML Template based on the presentation ID and
tab.
6. Two JSON objects are added to the template, these are:

a. Global Variables: This object contains settings set in the Web.config, the
LayoutData and DataURLs as described above.

b. Session Info: This object gives the page data about the user’s session.

7. This page is returned to the client.

8. The client builds a skeleton page based on the data returned in the initial response

9. The client calls JSON API (/Profiles/ProfileJsonSVC.aspx) one or more times (data is
split into multiple API calls for many pages to increase cache hits, both server and client
side.

10. The client fills in the missing data to create the final page.

The Ul layer is implemented via Javascript, HTML and CSS files under the folder /StaticFiles.
The Javascript front end uses REST calls to communicate with the backend, to retrieve relevant
data from JSON APIs. The sibling folder /Branding contains files that enable simple branding of
the profiles site. The Branding and Customization guide provides an in-depth description of
branding and customization options.

The backend is divided into applications as described in the Profiles 1.0.0 — 3.1.0 Website

Framework section. Each application within profiles (currently Activity, Lists, Profiles and
Search) contains a *SVC.aspx class which provides API functionality for that application.

Profiles 1.0.0 — 3.1.0 Website Framework

The website’s graphical user interface (GUI) is divided into sections called “panels”. Each panel
contains a list of “modules”. Modules are implemented as .NET controls. Most modules function
by requesting RDF data and applying an XSLT file to render it as HTML. However, some
perform more complex tasks. The website “Framework” creates the HTML “shell” illustrated
below. The shell provides the page layout for the panels. The Framework uses the data in an
XML file called the PresentationXML to determine the window and page titles and which
modules to load into each panel.

Window Title

Header Panel

. Module 1
Menu Panel Page Title Passive Panel
Tab 1 Tab 2 Tab 3
Module 1 Module 1
Main Panel
Module 2
Module 1
Module 2
Module 3
Active Panel
Module 2
Module 3
Module 1
ipiie Module 4
Module 2
Footer Panel Module 1

Below is a box diagram of the website components. When the server receives a RESTful URL,

a set of “resolvers” parse the query string path to determine which application is being

requested and what variables should be passed to the application. Each application performs
different functions. The Profile application takes a URI and returns an RDF document. The
Display application takes a URI and renders it as HTML. Applications that have a user interface
component, such as Display, Search, and About send the Framework an application-specific
PresentationXML and an optional RDF Data object. The Framework’s Master Page creates the
HTML shell, which includes images, CSS, and JavaScript files. The Framework uses the data in
the PresentationXML to select which modules to load, and it passes parameters listed in the

PresentationXML to the modules.

Meodules
HTMLBlock NetworkDetails
Module Parameters t
Global Variables Images/CSS/JS
Framework

Global Utilities Master Page

PresentationXML, RDF Data ‘t

Application Variables ‘t
REST Resolvers [Elfs]sE N =107 App Resolver
RESTful URL t

Applications

Modules typically obtain data by performing an HTTP POST to a URI that returns an RDF
document. That URI can exist anywhere on the internet. If the URI happens to be in Profiles,
then the HTTP POST will pass through the REST Resolver and be handled by the Profile
application. Thus, the Display application usually calls the Profile application multiple times
indirectly via the Modules that it tells the Framework to render.

When a user enters a Profiles URI into the web browser, the following events occur:

11. A 303 redirect sends the user to a URL that corresponds to the Display application.

12. The Display application retrieves a PresentationXML specific to the RDF class of the
URI from the Profiles database and sends it to the Framework.

13. The Framework parses the PresentationXML and loads the appropriate modules.

14. The modules request RDF data via an HTTP POST to a URI. The request header will
contain an “application/rdf+xml” content type.

15. If it is a Profiles URI, then Profiles will recognize the “application/rdf+xml” content type in
the request header and perform a 303 redirect to a URL that corresponds to the Profile
application.

16. The Profile application will first see if the RDF data for the requested URI exists in its
cache. If so, it will return the data from cache. Otherwise, it will retrieve the RDF from the
Profiles database and store it in cache before returning it.

17. The modules apply XSLT to the RDF to render HTML.

Applications

Below is a list of default applications in Profiles RNS. The source code for a new application

should

be placed within its own folder, and the application must be “registered” in the

ApplicationModuleCatalogue.xml file.

Name

Description

Profile

Returns the RDF document for a URI.

8

Display

Renders a URI as HTML.

Search

Search identifies all RDF nodes that have a property whose value matches a search
string. It displays a list of those nodes and links to their URIs. Faceting allows users to
narrow the search results by type (class group) or subtype (class). Any property can be
used to sort search results. Search incorporates stemming (to match different parts of
speech), removal of stop words (e.g., “the”, “of”), and term expansion through the use
of a thesaurus (e.g., “cancer” -> “neoplasm”).

About

Displays general information about the Profiles RNS website.

SPARQL

This is an interface to test the Profiles RNS SemWeb SPARQL engine. Users can
enter an arbitrary SPARQL query and view the results. In the final Profiles RNS 1.0.0
release, this front-end tool will only be available to administrators by default, though
the ability to pass SPARQL queries to the SemWeb web services can remain open to

the public.

Edit

This application allows users to manage the content on their profiles.

Direct

Direct2Experts is a federated search tool that locates experts across multiple
institutions using Profiles RNS and other research networking products.

Modules

Below is a list of default modules in Profiles RNS. The source code for a new module should be
placed within its own folder within an application’s modules folder, and the module must be
“registered” in the application’s modules/ModuleCatalogue.xml file.

Application Module Description

Federated search across multiple institutions
DIRECT DirectSearch.ascx using the Direct2Experts network.

Custom edit module that simplifies creating or
Edit CustomEditAwardOrHonor.ascx updating an AwardOrHonor.

Custom edit module that simplifies creating or
Edit CustomEditMailingAddress.ascx updating a Mailing Address.

Custom edit module that simplifies creating or
Edit CustomEditMainlmage updating a Mainlmage.

Custom edit module that simplifies creating or
Edit CustomEditAuthorinAuthorship updating an AuthorinAuthorship.

Default module for editing a DataType
Edit EditDataTypeProperty.ascx property.

Default module for editing an ObjectType
Edit EditObjectTypeProperty.ascx property.

This is a wrapper for all modules on the profile
Edit EditPropertyContainer.ascx editing pages.

Displays a list of properties on a profile that a
Edit EditPropertyList.ascx user can edit.

Enables a user to change the visibility settings
Edit EditVisibilityOnly.ascx of a property, but not the value of the property.

Displays the global error message from the
Error ErrorMessage.ascx global.asax.cs file.
Framework ApplyXSLT.ascx Applies a specified XSLT file to RDF data.

Displays a "Hello World" message to help with
Framework HelloWorld.ascx development/debugging.
Framework HTMLBIlock.ascx Displays a specified block of HTML.
Framework MainMenu.ascx Displays the main menu on the left sidebar.
Login Login.ascx Profiles login module.

R Ol vt by g ocion o

Disol = oral I T
Brofil Bassivel] : - - - - -)
Brofil BacsiveToxt E.'EEIEWS alistotitoms A tlnsug_lntsls.issen.
Brofil 5 List EE|5£|elalysiaslssEI;s tE“t. |tI|s||gI|tEs_I|ss;E|.

Enables a user to view/change the people who
have proxy permissions to edit his or her

Proxy ManageProxies.ascx profile(s).

Enables a user to search for people who can
Proxy SearchProxies.ascx be added as designated proxies.

Mini-search-module-atthe-top-of-the left
Search SearchConnection-asex returned-by-akeyword search-

Disol ; b oriter] o riahtsid
Search SearchEverythingFacets-asex resulis page ofa-Search-Everything search:
Search SearchPerson.asex Search-for Peopleform-

Displays-the results of a-Person-Search-and-an

Displays-the-most-commonly-used-search

Enables-administratorstorun-a-SPARQL
SPARQL SPARQLSearch-asex search:

We try to minimize the amount of C# code in Profiles RNS. The complexity of how to store and
process RDF exists in the database, and the details of how to render a page are coded as

PresentationXML and XSLT files. As a result, little or no C# programming should be needed to
configure and customize Profiles. Extending the functionality of Profiles can be done in several

10

ways: (1) adding new classes or properties to the ontology, (2) editing the PresentationXML files
for existing applications, (3) creating a new application, or (4) creating a new module.

11

Database Architecture

Profiles 4.x.x versions maintain the existing Database Architecture that has been in place since
version 1.0.0. Profiles 4.0.0 extends this architecture with the [Display.] and [Display.Module]
schemas, these schemas are concerned purely with the access of data from the profiles triple
store, and from relational tables. Profiles 4.0.0 increases the retrieval of data from relational
tables, both cache tables periodically built from the triple store and data tables used to build the
triple store are used by the display schema to return data to the website. This allows
significantly better website performance than the more pure RDF architecture of 3.1.0 and prior
versions.

Schemas Overview

The Profiles database is organized in a hierarchy, with the top two levels defined by schemas.
We use a convention where each schema name has two parts, separated by a period. Note that
because of the period, the schema name must always be written in brackets. For example, the
table [ProfilesRNS].[RDF.Stage].[Log.Job] has the table name “[Log.Job]”, it is in the schema
“[RDF.Stage]”, and it is in the database “[ProfilesRNS]”. When writing queries, you do not need
to include the database name if you are already connected to the database, but you will always
need to include the schema name.

The schemas are divided into two categories: (1) The “core” schemas are essential for Profiles
to function properly. Every instance of Profiles must contain the database components in these
schemas. (2) The “extended” schemas facilitate the data loading process or provide other types
of functionality that are specific to a domain. For example, there are tables to store attributes
associated with Pubmed articles; however, these are only relevant in biomedicine. A financial
company using Profiles to build networks among its global employees might create different
extended schema tables that store information about countries and markets.

There is a general direction of data flow in Profiles, as illustrated in the diagram below, which
begins with external data from many different sources. This is then parsed and disambiguated
to identify distinct objects and their relationships. Derived data may be obtained from the
disambiguated data through computational methods such as social network analysis. Finally,
disambiguated and derived data is described as linked data, which consists of nodes and
triples. An ontology describes the classes and properties in the linked data. At each step in the
data flow, there is a reduction in the number and complexity of database objects, as the model
used to represent the data becomes simpler and more generalizable.

12

@ Ontology
8
8 .
2 | Nodes, Linked
= ©O| Triples Data
o ,
L Co-Authors, Derived
-% % Social Network Analysis Data
(@) § Disambiguated
3 | Faculty Publications Data
2
Q
& | Mediine, 151 Web of Knowledge, External
DSpace, Administrative Databases, Data
Schema Complexity
Core Schemas
Schema Description

Handles global functions, such as resolving RESTful URLs and managing

[Framework] scheduled jobs.

[Ontology.] Contains the semantic web ontology used by the website.

[Ontology.Import] Contains tools to import and process OWL files.

Contains the "presentation" ontology, which describes how content should be

[Ontology.Presentation] displayed on the website.

[RDF.] Contains the RDF nodes and triples specific to an instance of Profiles.
[RDF.Security] Contains information about who can access secure/private nodes and triples.
Used to format [RDF.] data so that it can be used by the SemWeb SPARQL

[RDF.SemWeb] .
engine.

Used by the bulk data loading process to store temporary data before it is

[RDF.Stage] loaded into the [RDF.] tables.

[User.Account] Contains information about authorized users of the website.
Contains information about website sessions. A public user of the website will
[User.Session] have a session even if she has not logged in and linked the session to a
specific user account.
[Utility.Application] Contains functions and procedures that are used in a variety of contexts.
[Utility.Math] Contains mathematical lookup tables and functions.

Contains lookup tables and functions related to support natural language

[Utility. NLP] processing for search and other features.

Extended Schemas

The Profiles website is structured as a collection of “applications”. In the extended schemas, the
first part of the schema name corresponds to the primary application that uses it, such as
“Profile”. Below are the default extended schemas included in Profiles.

Schema Description
. . Supports Direct2Experts functionality--federated search across multiple institutions
[Direct.”] ; :)
using Profiles and other research networking products.
[Edit.*] Allows users to edit profile content.
[Login.*] Allows users to login to the website.

13

[Profile.Cache]

Contains the results of bibliometric and social network analyses.

[Profile.Data]

Stores copies of certain types of RDF data in relational tables to help with data
loads or to improve performance of particular kinds of queries.

[Profile.Framework]

Used by the Profile application to interact with the Framework.

[Profile.Import]

Used to place person and other types of data during an initial load of Profiles RNS
and in subsequent updates.

[Search.]

Provides basic search functionality for Profiles RNS.

[Search.Cache]

Improves the performance of the Profiles RNS search tool by pre-processing the
RDF data through scheduled jobs.

[Search.Framework]

Used by the Search application to interact with the Framework.

Core Database Objects

Below are selected objects within the core database schema. The object Types are table (T),
view (V), stored procedure (P), and function (F). The Uses are: Administrative (A) objects are
used during the initial software installation, modifying the ontology, or debugging. They are not
used during normal operation of the website. Job (J) objects are used as part of scheduled
processes to load data into Profiles RNS or to analyze existing data (e.g., update search
cache). Web (W) objects are called directly by the .NET code. Helper (H) objects are used by

other objects, but are generally not called directly.

Object Type | Use | Description
[Framework] [InstallData] T A _Used fo_r bulk import of ontology data during the
installation process.
[Framework.].[Job] T J Lists steps that are executed during scheduled
data updates.
[Framework.].[JobGroup] T J Describes related sets of jobs.
Keeps a log of each time a step in the
[Framework.].[Log.Job] T | Y | [ontology.][Job] table is run.
[Framework.].[Parameter] T W | Global parameters used by Profiles.
Lists URL prefixes that should be treated as
[Framework.].[RestPath] T H RESTful paths and contains pointers to optional
stored procedures that can map paths to actual
files.
[Framework.].[vwDatabaseCode] Vv A Lists _the code for stored procedures and
functions.
[Framework.].[vwDatabaseObjects] V A Lists all database objects.
Facilitates moving Profiles from one
[Framework.].[ChangeBaseURI] P A | environment to another by changing the base
URI path throughout the database.
Combines all non-OWL ontology data into a
[Framework.].[CreatelnstallData] P A single XML object. This is used only when
building a Profiles install package.
[Framework.].[LICENCE] = A Contains the open source license for the
software.
Parses the InstallData.xml file and populates all
[Framework.].[LoadInstallData] P A non-OWL ontology tables.
[Framework.].[LoadXMLFile] = A Impo_r’Fs data from an external file into a
specified table and column.
[Framework.].[ResolveURL] P W | Maps RESTful URLs to their actual file names.
[Framework.].[RunJobGroup] P J Runs a series of data load or update steps.
[Ontology.].[ClassGroup] T H Lists top-level RDF Class Groups used in

search and browse.

[Ontology.].[ClassGroupClass] T H Maps Class Groups to individual RDF Classes.
Defines which RDF properties should be
[Ontology] [ClassProperty] T H returned and expanded when data is requested.
[Ontology.].[ClassTreeDepth] T H Contains the class hierarchy. Used by Search.
[Ontology.].[DataMap] T J Maps extended schema data to the ontology.
[Ontology.].[Namespace] T W | Lists namespaces and their prefixes.
Ontology.].[PropertyGroup] T H Lists the broad groups of related properties.
[ay pertyGroup g
[Ontology.].[PropertyGroupProperty] T H Lists the properties within each group.
[Ontology.].[vwMissingClassProperty] V A bﬁzt%:fszgﬁgsgﬁyog gllggy not represented in
[Ontology.].[vwMissingPropertyGroup Vv A Lists items in the ontology not represented in
Property] the PropertyGroupProperty table.
[Ontology.].[vwPropertyTall] V A | Summarizes properties in [Ontology.].[Triple].
[Ontology.].[vwPropertyWide] V A | Summarizes properties in [Ontology.].[Triple].
[Ontology.].JAddProperty] P A | Adds a new property to the ontology tables.
[Ontology.].[CleanUp] P A Helps with populating the ontology tables.
Returns the number of nodes associated with
[Ontology.].[GetClassCounts] P H Class Groups and their classes. This is used
primarily for search and browse in the website.
Updates ontology tables with counts from the
[Ontology.].[UpdateCounts] P J [RDF] tables.
After the Ontology is loaded into the [RDF.]
. . tables, this procedure updates [Ontology.]
[Ontology.] [UpdateDerivedFields] P A tables with the NodelDs that were created
during the loading process.
[Ontology.Import].[OWL] T A Contains RDF ontologies in OWL XML format.
[Ontology.Import].[Triple] T A Presents OWL data as triples.
[Ontology.Import].[vwOwITriple] V A Extracts triples from [Ontology.].[OWL].
[Ontology.Import].[ConvertOWL2Tripl Parses the [Ontology.].[OWL] data and stores
P A ; . !
e] the triples in [Ontology.].[Triple].
Creates a record in the [Ontology.].[OWL] table
[Ontology.Import].[ConvertTriple20W by combining triples in [Ontology.].[Triple]. This
P A | o o
L] is used only when building a Profiles install
package.
Returns a hierarchical list of classes defined in
[Ontology.Import].[fnGetClassTree] F A [Ontology.].[Triple].
Returns a hierarchical list of properties defined
[Ontology.Import].[fnGetProperty Tree] F A in [Ontology].[Triple].
: A temporary table used to help with editing
[Ontology.Presentation].[General] T A PresentationXML.
: A temporary table used to help with editing
[Ontology.Presentation].[Panel] T A PresentationXML.
Templates for how different types of profiles,
[Ontology.Presentation].[XML] T H networks, and connections should be displayed
on the website.
[Ontology.Presentation].[ConvertTable Creates PresentationXML from data in
s2XML] P A temporary tables
[Ontology.Presentation].[ConvertXML Parses data in PresentationXML to temporary
P A
2Tables] tables.
[RDF.].[Alias] T H Lists alternative names for particular nodes.
[RDF.].[Node] T H Lists RDF nodes.
[RDF.].[Triple] T H Lists RDF triples.
[RDF.].[vwClass] V A | Summarizes classes from data in

[RDF.].[Triple].

Summarizes properties from data in

[RDF.].[vwPropertyTall] V A [RDF] [Triple].
[RDF.].[vwPropertyWide] v | A [S;S"F”_“]_a[%‘;fe‘]’_r"pe”'es from data in
. Lists the node values of the subject, predicate,
[RDF.].[vwTripleValue] V' | A | and object of the triples in [RDF{].[Trif)Ie].
[RDF.].[DeleteNode] P W | Deletes a node and its associated triples.
[RDF.].[DeleteTriple] P W | Deletes a triple and its dependencies.
[RDF][GetDataRDF] P W Returns_RDF/XML for a profile, network, or
- connection.
Returns the PresentationXML template
[RDF.].[GetPresentationXML] P W | associated with a profile, network, or
connection.
[RDF.].[GetPropertyList] P W | Combines DataRDF and PresentationXML.
[RDF].[GetPropertyRangeList] = W Returns classes that can be linked to by a
- property.
[RDF.].[GetStoreNode] P W | Creates or updates a single node.
[RDF.].[GetStoreTriple] P W | Creates or updates a single triple.
[RDF].[SetNodePropertySecurity] = W Changes the security group for a single node
and property.
[RDF.].[fnTripleHash] F H Returns the SHA1 hash of a triple.
[RDF.].[fnURI2NodelD] F H Returns the NodelD of a URI.
[RDF].[fnValueHash] E H Returns the SHA1 hash of the language, data
- type, and value of a node.

. Lists Security Groups, which are groups of
[RDF.Security].[Group] T H people with c):/ertainpaccess rights.g P
[RDF.Security].[Member] T Lists the users that belong to a group.
[RDF.Security] [NodeProperty] T H Lists'qustom security groups for a property of a

specific node.
LIEIFD)]F.Securlty].[GetSesswnSecuntyGr P H Returns the primary security groups of a user.
[RDF.Security].[GetSessionSecurityGr P H Returns all the individual security groups to
oupNodes] which a user has been assigned.
[RDF.Stage].[InternalNodeMap] T | g | osedlomap ROF NodeDs 1o IDs usedin the
Keeps a log of each time the
[RDF.Stage].[Log.DataMap] T J [Ontology.].[DataMap] table is used to convert
extended schema data into RDF.
. Keeps a log of each time data in the
[RDF.Stage] [Log.Triple] T [RDIF:).Stagg].[Triple] table is converted to RDF.
. Keeps a record of which Triple|Ds were created
[RDF.Stage].[Triple.Map] T J frompStageTriplele_ P
Used as a temporary table to store information
[RDF.Stage].[Triple] T J about triples before they are copied to the
[RDF.] tables.
[RDF.Stage].[LoadAliases] J Populates the [RDF.].Alias table.
[RDF.Stage].[LoadTriplesFromOntolo A Loads data from the ontology into
avyl [RDF.Stage].[Triple].
[RDF Stage].[ProcessDataMap] = J Creates nodes and triples from extended
' ' schema data.
Loads data from [RDF.Stage].[Triple] into
[RDF.Stage].[ProcessTriples] P J [RDF.].[Node] and [RDF.].[Triple], creating new

nodes and triples as needed.

16

Stores a history of the keyword phrases that

[Search.].[History.Phrase] T H
were searched.
. Stores a history of the full queries that were
[Search.].[History.Query] T H searched.
. Returns the details of why a node matched a
[Search.].[GetConnection] P w search query.
[Search.].[GetNodes] = W Search for nodes based on keywords and other
- parameters.
[Search.][GetTopSearchPhrase] = W Determines which search phrases were used
- P most often.
A simplified version of the search algorithm,
[Search.].[LookupNodes] P H which does not rely on the cache tables.
[Search.].[ParseSearchString] = H Extracts phrases from the keyword search string
- 9 entered by the user.
|[F§Se:]rch.Cache].[H|story.TopSearchPh T J Lists the most commonly used search phrases.
[Search.Cache].[History.UpdateTopSe = J Determines the most commonly used search
archPhrase] phrases.
Parses parameters out of a RESTful search
[Search.Framework].[ResolveURL] P H URL.
[User.Account].[DefaultProxy] T H Lists users who can edit other user’s content
’) y based on affiliation.
[User.Account].[DesignatedProxy] T H Lists users who have been designated by other
’) 9 y users to edit their content.
[User.Account].[Relationship] T H Lists “active network” relationships.
[User.Account].[User] T H Lists authorized users of Profiles.
[User.Account].[Authenticate] P W | Provides default user authentication.
I[DLiz)e(;]A ceount].[Proxy.AddDesignated P W | Adds a designated proxy to a user.
LLCstPergﬁ;:]count].[Proxy.DeIeteDeS|gnat W | Deletes a designated proxy from a user.
[User.Account].[Proxy.GetProxies] W | Gets a list of proxies related to a user.
[User.Account].[Proxy.Search] = W Searches for users who can be added as
) ' y: designated proxies.
i[cl)Jns:r:i.g]ccount].[Relatlonshlp.GetReIat P W | Returns a user’s active network.
g%ziri.rﬁccount].[Relatlonshlp.SetReIatl P W | Stores a new active network connection.
[User.Session].[Bot] T H Contains a list of UserAgents known to be web
]) crawlers.
[User.Session] [History.ResolveURL] T H Contains a log of pages accessed during a
])] session.
[User.Session].[Session] H Contains basic information about each website
' i session.
[User.Session].[CreateSession] P W | Creates a new session.
[User.Session].[UpdateSession] W Updates the data associated with an existing

session.

Security Groups

View and edit permissions in Profiles RNS are managed through “security groups”. A security
group is bigint number. Security groups with negative values correspond to user roles (e.g.,
“public” or “admin”). Security groups with positive values correspond to specific users. A given

17

user can be linked to multiple security groups. Every node and triple has a ViewSecurityGroup.
A user must be linked to that security group in order to view the node or triple. Every node also
has an EditSecurityGroup, which defines who can make changes to the properties of that node.
Triples do not have EditSecurityGroups—triples can be edited if the user is linked to the
EditSecurityGroup of the subject of the triple.

A user who is not logged into the site has a role of “public”, which is security group -1. A logged
in “user” is security group -20, and an “admin” is security group -50. Every role has access to
everything a role with a higher number has. For example, admins can see and edit everything
users can, and users can see everything the public can. Therefore, a “curator”, which has
security group -40, can do everything a user can, but not necessarily everything an admin can.

In Profiles RNS, a user is not the same as a profile. A user might own multiple profiles. For
example, a department chair might manage both a person profile for herself as well as an
organization profile for her department. Every user account has a unique URI, though this
account profile is not visible on the website. What are visible are the profiles of the URIs that the
user manages. This is important for understanding how security groups work. Suppose Mary
Smith’s user account corresponds to NodelD 1234, but her online profile corresponds to NodelD
5678. In order for Mary Smith to edit her own profile, the EditSecurityGroup of NodelD 5678
must be 1234. If you want to give Mary Smith additional editing rights to a different profile, then
again, the user’s NodelD, not the user’s profile’s NodelD, should be the EditSecurityGroup.

No user has access to security group 0. That is reserved for “deleted” items that cannot be

physically deleted from the database. In other words, when a node or triple is given a
ViewSecurityGroup of 0, then it can no longer be accessed through the website.

Node and Triple Tables

The [RDF.].[Node] and [RDF.].[Triple] tables store the RDF data in Profiles RNS. The data for
every profile in the website comes from these tables, and it is used by the SemWeb API for
SPARQL queries.

The unique identifier in the [RDF.].[Node] table is the NodelD. Each node has a Value and
optional Language and DataType. The [RDF.].[fnValueHash] function combines the Value,
Language, and DataType into a binary(20) value stored in the ValueHash column. The
ValueHash is used by SemWeb in SPARQL queries. A ValueHash cannot be repeated. In other
words, the combination Value/Language/DataType must be unique in [RDF.].[Node]. The
ObjectType = 0 if the node is an entity, and ObjectType = 1 if the node is a literal. The value of
an entity is a URI. The ViewSecurityGroup and EditSecurityGroup indicate who has permission
to view and edit the node. The InternalNodeMaplD is a reference to a corresponding record in
the [RDF.Stage].[InternalNodeMap] table, which is described in more detail in the Loading Data
Using ProcessDataMap section.

The unique identifier in the [RDF.].[Triple] table is the TriplelD. Each triple has a Subject,
Predicate, and Object values, which correspond to NodelDs. The [RDF.].[fnTripleHash] function
combines the Subject, Predicate, and Object into a binary(20) value stored in the TripleHash
column. A TripleHash cannot be repeated. In other words, the combination
Subject/Predicate/Object must be unique in [RDF.].[Triple]. The ObjectType indicates whether
the object of the triple is an entity (0) or literal (1). The ViewSecurityGroup indicates who has
permission to view the triple. There is no EditSecurityGroup in this table. The EditSecurityGroup

18

of the Subject node determines who can edit the triple. The Graph value groups triples that were
created as part of the same process, such as importing an OWL file. Every triple has a Weight,
whose value is a float between 0 and 1, which indicates the “strength” of the triple, or the
probability that the triple is correct. The concept of a triple weight is not part of RDF. Itis a
Profiles RNS extension of RDF, which is used for automatically derived triples (e.g., passive
networks). The idea is that there can be some uncertainty about whether the relationship
described by a derived triple really exists, and the weight reflects that uncertainty. Profiles RNS
also adds a SortOrder value, which determines the default order in which the triples for a given
subject-property combination are listed in various places in the website. The SortOrder values
are sequential integers starting at 1. The Reitification value links a triple to a node whose
properties provide additional information about the triple, such as provenance.

Data Flow

Profiles RNS is designed to be a dynamic website, with multiple data feeds regularly updating
the system. There are several different processes that load and update data. Understanding the
direction of data flow and the entry points is essential for adding new types of data.

1) Loading person data from an external (e.g., HR) source.

[Profile.Import] = [Profile.Data] - [Profile.Cache] - [RDF.]

Person data such as names, contact information, and affiliations are loaded into the
[Profile.Import] tables. The [Profiles.Import].[LoadProfilesData] procedure uses this to
update the [Profile.Data] tables. The Nightly/Weekly/Monthly jobs, as defined in the
[Framework.].[JobGroup] and [Framework.].[Job] tables, as well as the geocoding and
author disambiguation services, then populate the [Profile.Cache] tables. The
[Profile.Cache].[Process.Audit] table stores a log of the steps that were run to update the
[Profile.Cache] tables. The [RDF.Stage].[ProcessDataMap] procedure uses the
[Ontology.].[DataMap] table to map selected items in the [Profile.Data] and
[Profile.Cache] tables to the ontology and to generate RDF nodes and triples in the
[RDF.] tables.

2) Loading user account data from an external source.

[Profile.Import] > [User.Account] > [RDF.]

Information about users is also loaded into [Profile.Import]. The
[Profiles.Import].[LoadPersonData] process uses this to update the [User.Account]
tables. The [RDF.Stage].[ProcessDataMap] procedure generates RDF nodes and triples
for this data.

3) Creating RDF data from an extended data table.

[Profile.Data] - [RDF.]

When editing profiles, some data is stored directly into the [RDF.] tables as nodes and
triples. However, other types, such as publications, are first stored in [Profile.Data] tables
and then copied to the [RDF.] tables using the [Profiles.Stage].[ProcessDataMap]
procedure.

19

4) Loading data as friples.

[RDF.Stage] = [RDF.]

Data can be loaded as triples (subject URI, predicate URI, and object URI or literal
value) into the [RDF.Stage].[Triple] table and then loaded into the [RDF.] tables using
the [RDF.Stage].[ProcessTriples] procedure.

5) Adding new classes or properties to the ontology.

[Ontology.Import] = [Ontology.] > [RDF.Stage] > [RDF.]

OWL files are loaded into the [Ontology.Import].[OWL] table. The
[Ontology.Import].[ConvertOWL2Triple] procedure parses the OWL file and stores triples
in the [Ontology.Import].[Triple] table. The [RDF.Stage].[LoadTriplesFromOntology]
procedure copies this data into the [RDF.Stage].[Triple] table, and then the
[RDF.Stage].[ProcessTriples] procedure loads this into the [RDF.] tables.

6) Presenting the RDF data in a format that can be used by SemWeb (SPARQL).

[RDF.] > [RDF.SemWeb]
This is an automatic transformation that occurs through [RDF.SemWeb] views.

7) Populating the search cache based on the RDF data.

[RDF.] = [Search.Cache]

The [Search.Cache].[Public.UpdateCache] and [Search.Cache].[Private.UpdateCache]
build the search indexes from the [RDF.] and [Ontology.] tables.

Each of these data load processes get launched by the [Framework.].[RunJobGroup]
procedure, which is called by scheduled database jobs that are setup during the Profiles RNS
installation. The [Framework.].[RunJobGroup] procedure iterates through the [Framework.].[Job]
table to determine the next process to run. A record of what was run is stored in the
[Framework.].[Log.Job] table.

The diagram below illustrates selected data feeds (circles), tables (grey boxes), and procedures
(red boxes) involved in the installation of Profiles RNS.

20

Source Data Intermediate Processing Tables Tables Used by the Website

[Ontology.Import]. [Ontology.Import].
[Owi] [Triphe]

&

L2 »

‘E (Derived Fields)

(=}

[Framework]. [Ontalogy.]).”
[InstallData) IF k.J.*
[ROF Security].
[NodeProperty] [RDF].[Alias]
[RDF.5tage].
Profiles [Triple]
Beta

Data

Extended
Database [refiedmpart], Tabtes RDF.].[Triple]
Tables [BRELTEk]
= - = Y [Search.Cache].
[RDF Stage. [Private.”]
rons [InternalNodeMap]
SemGroups > [Profile. Data). |utiliny.NLP). I o [Utility. NLF].
/MeSHxm| [Concept.Mesh.File] |updataThesaurus] ke [Thesaurus]

Ontology Schema Tables

This section describes the [Ontology.] tables. An important note about these tables is that some
field names start with an underscore “_”. You should not directly edit the values in the fields.
Their values are set automatically by the stored procedure [Ontology.].[UpdateDerivedFields].
After you make changes to any of the [Ontology.] tables, you should run
[Ontology.].[UpdateDerivedFields] to make sure the “_” fields are up-to-date. Also, although it is
not required, there is a logical order in which rows in several of the [Ontology.*] tables should be
sorted. The stored procedure [Ontology.].[Cleanup] @Action = ‘UpdatelDs’ will update the sort
order.

[Ontology.].[ClassGroup] — ClassGroups group related classes. They are used as the top level
of faceting when running a keyword search to narrow results to, for example, people,
organizations, or concepts. This table lists the URI for each ClassGroup.

[Ontology.].[ClassGroupClass] — This table lists the classes for each ClassGroup. All classes in
Profiles RNS should be assigned to at least one ClassGroupURI. Otherwise, they will not
appear properly in search results.

[Ontology.].[PropertyGroup] — PropertyGroups group related properties. They are used to
organize content on profile pages. This table lists the URI for each PropertyGroup.

[Ontology.].[PropertyGroupProperty] — This table lists the properties for each PropertyGroup. All
properties in Profiles RNS should be assigned to exactly one PropertyGroupURI. Profiles RNS
has a default way of displaying and editing all properties on the website. You can override this
for a particular property by entering ModuleXML in the CustomDisplayModule or
CustomEditModule fields. Placing the ModuleXML in this table affects the property globally. If

21

you have a custom display or edit module for a property that should only be used in the context
of a particular class, then use the CustomDisplayModule and CustomEditModule fields in the
[Ontology.].[ClassProperty] table.

[Ontology.].[ClassProperty] — This table defines which classes and properties are used by the
website. Even if RDF data are loaded into the [RDF.].[Node] and [RDF.].[Triple] tables, they will
not be available to the website unless the classes and properties are listed in
[Ontology.].[ClassProperty]. (SemWeb/SPARQL is an exception in that it does not use the
[Ontology.].[ClassProperty] table.) The three columns, Class, NetworkProperty, and Property
uniquely identify each row in this table. There must always be a value for Class and Property,
though the NetworkProperty can be null. The NetworkProperty is used for reitifications (triples
about other triples) and will be described in more detail in a future version of Profiles RNS. The
remaining fields are:

o IsDetail — In Profiles RNS, each URI has short-form and long-form RDF. The short-form
includes just the most important properties that need to be returned wherever the item is
displayed. For example, in nearly all cases, both the firstName and lastName properties
of a person are needed when presenting a list of people. The long-form RDF includes
properties that provide additional detail, such as a person’s overview text, which typically
only appears when viewing that item’s full profile page. When IsDetail = 0, the property is
always included; when IsDetail = 1, it is only included when the long-form RDF is
explicitly requested by setting @showDetails = 1 when calling [RDF.].[GetDataRDF].

o Limit — If a value is provided, then only that number of properties is returned. For
example, by default, a person profile only displays the top 5 concepts. The SortOrder
field in the [RDF.].[Triple] table is used to select the triples (e.g., “where SortOrder <=
Limit”).

¢ IncludeDescription — When calling [RDF.].[GetDataRDF], if @expand = 1, then the RDF
for any objects linked to the subject via properties whose IncludeDescription value is 1
will also be returned. This makes it easier to retrieve all the RDF data needed to display
a profile. Note that IncludeDescription is recursive—the stored procedure keeps iterating
through triples until everything is expanded. As a result, improper use of IsDetail and
IncludeDescription can have unexpected consequences, with far more data being
processed than needed. As a rule of thumb, start by setting both attributes to 0, and only
change them to 1 when absolutely necessary.

¢ IncludeNetwork - When calling [RDF.].[GetDataRDF] with @showDetails = 1, the RDF
will include summary statistics for properties with IncludeNetwork = 1. These statistics
are calculated on-the-fly, which can affect performance. So, minimize the use of this
feature.

e SearchWeight — This is a number between 0 and 1, which indicates how relevant a
property is for search results. Generally, the rdfs:label property is one of the most
important properties, and its SearchWeight value is set close to 1. If the SearchWeight is
0, then the property is not considered by the search algorithm.

o CustomDisplay — If set to 1, then Profiles RNS will not display this property on the
website by default. A custom module must be defined somewhere to display it.

e CustomEdit — If set to 1, then Profiles RNS will not give the user access to the default
DataType and ObjectType property editing tools. A custom module must be defined
somewhere in order to enable editing.

o ViewSecurityGroup — This value determines which types of people can view this
property. For example, some properties might only be visible to users who have logged
into the website. See the section on Security Groups for more information.

22

o EditSecurityGroup — This value determines which types of people can edit this property.
If, for example, the EditSecurityGroup = -50, then a person who is editing her own profile
will not see the property listed on the Edit Menu page unless she is also an
administrator. The additional Edit*SecurityGroup fields determine the level of access for
specific edit features/operations.

o EditPermissionsSecurityGroup — This is the SecurityGroup needed to change the
ViewSecurityGroup of an item.

EditExistingSecurityGroup — This is the SecurityGroup needed to edit an existing triple.

o EditAddNewSecurityGroup — This is the SecurityGroup needed to add a new triple. In
the case of a DataType property, this creates a new triple whose object is a literal. In the
case of an ObjectType property, this creates a new triple whose object is a new entity.

o EditExistingSecurityGroup — This is the SecurityGroup needed to add a new triple, using
an ObjectType property, where the entity already exists. For example, this allows a user
to link herself to an organization that has already been given a URI. In contrast,
EditAddNewSecurityGroup allows a user to define a new organization.

o EditDeleteSecurityGroup — This is the SecurityGroup needed to delete an existing triple.
MinCardinality — This is the minimum required number of triples of the particular
property. A user cannot delete a triple if fewer than MinCardinality would remain of that
property. [This is not fully implemented in the current version of Profiles RNS.]

¢ MaxCardinality — This is the maximum number of triples of the particular property that
can be added to a property. [This is not fully implemented in the current version of
Profiles RNS.]

¢ CustomDisplayModule — Profiles RNS has a default way of displaying properties on the
website. You can override this for a particular class-property by entering ModuleXML in
the CustomDisplayModule field. CustomDisplay must also be 1 for the
CustomDisplayModule to be used.

e CustomEditModule — Profiles RNS has a default way of editing properties. You can
override this for a particular class-property by entering ModuleXML in the
CustomEditModule field. CustomEdit must also be 1 for the CustomEditModule to be
used.

[Ontology.].[ClassTreeDepth] — This table is automatically derived from the ontology using
Subclass relationships.

[Ontology.].[Namespace] — This table lists the namespaces used by Profiles RNS. If you import
a custom OWL file using your own namespace, it must be added to this table.

[Ontology.].[DataMap] — This provides mappings from database objects to classes and
properties in the ontology. It is used by [RDF.Stage].[ProcessDataMap] as part of scheduled
jobs to update the [RDF.].[Node] and [RDF.].[Triple] tables. See the section on Loading Data
Using ProcessDataMap for more information.

Loading Data Using ProcessDataMap

The stored procedure [RDF.Stage].[ProcessDataMap] uses the mappings in the table
[Ontology.].[DataMap] to copy data from various tables and views into the [RDF.].[Node] and
[RDF.].[Triple] table. This is designed to happen on a scheduled basis (typically nightly) to keep
data in synch. While the [Ontology.].[DataMap] table provides a semantic mapping (column

23

name to class or property), the [RDF.Stage].[InternalNodeMap] table maps actual IDs. For
example, the [Ontology.].[DataMap] table has the following record

Class = 'http://vivoweb.org/ontology/core#Address'
NetworkProperty = NULL

Property = NULL

MapTable = '[Profile.Data].[Person]'

sinternalType = 'Person'

sinternallD = 'PersonID'

Because NetworkProperty and Property are NULL, this is defining a class, rather than the
property of a class. In this case, the class is vivo:Address. Note that even though the VIVO
ontology treats address as a class, Profiles RNS does not have a separate Address table. When
importing data, a person’s address is stored in additional columns in the [Profile.Data].[Person]
table (MapTable). The unique identifier in the [Profile.Data].[Person] table is “PersonlID”
(sInternallD), which is used in that table as a “Person” identifier (sInternalType).

In this example, the [RDF.Stage].[ProcessDataMap] procedure will create a new RDF node for
each record in [Profile.Data].[Person]. Also, for each record in [Profile.Data].[Person], it will add
a record to [RDF.Stage].[InternalNodeMap] with the following values:

Class = 'http://vivoweb.org/ontology/core#Address'
InternalType = 'Person’

InternallD = the PersonlD that uniquely identifies the address
NodelD = the NodelD that was created for that PersonlD

The next time [RDF.Stage].[ProcessDataMap] is run, a new node will not be created for a
previously processed address since [RDF.Stage].[InternalNodeMap] will already contain the
mapping. Because the NodelD determines the URI, this ensures that the URI for the address
does not change.

Consider a different example, where nodes are being created for people. The records that are
added to [RDF.Stage].[InternalNodeMap] look like:

Class = 'http://xmins.com/foaf/0.1/Person’

InternalType = 'Person’

InternallD = the PersonlD that uniquely identifies the person
NodelD = the NodelD that was created for that PersonlD

As with addresses, the InternalType is “Person” and the InternallD is a “PersonlID”. However, in
this case, the Class is “http://xmins.com/foaf/0.1/Person”. The combination Class, InternalType,
and InternallD is unique to each row in the [RDF.Stage].[InternalNodeMap] table.

Another example from [Ontology.].[DataMap] is

Class = ‘http://www.w3.0rg/2004/02/skos/core#Concept’
NetworkProperty = NULL

Property = ‘http://www.w3.0rg/2000/01/rdf-schema#label’
MapTable = "[profile.data].[concept.mesh.descriptor]'
sinternalType = 'MeshDescriptor'

sinternallD = 'DescriptorUl’

24

oValue = ‘DescriptorName’
oObjectType = 1

In this case, a property is defined. As a result, instead of creating a node, this creates a triple in
the [RDF.].[Triple] table. (An [RDF.].[Node] record might also be created if the object of the triple
is a literal that does not yet have a corresponding node.) This example maps the
DescriptorName field in the [profile.data].[concept.mesh.descriptor] table to the rdfs:label
property of entities of type skco:Concept. The DescriptorUl is the unique identifier for the
concepts listed in the MapTable. The oObjectType = 1 indicates that the DescriptorName is a
literal value.

When oObjectType = 0, the oValue is the URI of an entity, rather than a literal. Instead of
specifying a URI in the oValue column, the URI can be derived from the
[RDF.Stage].[InternalNodeMap] table by providing an oClass, olnternalType, and olnternallD.

The DataMapGroup value in the [Ontology.].[DataMap] table indicates records that should be
processed together as a batch. If the IsAutoFeed column is set to 0, then that record will be
ignored during scheduled jobs. Records whose IsAutoFeed = 0 are typically for one-time data
imports.

The Graph value in the [Ontology.].[DataMap] table is copied into the Graph column of
[RDF.].[Triple] when a new triple is created. This can be used to trace the triple back to the
ProcessDataMap process.

The oStartDate, oStartDatePrecision, oEndDate, and oEndDatePrecision columns in the
[Ontology.].[DataMap] table will be used in a future version of Profiles RNS.

Loading Data Using ProcessTriples

If you would like to import a data feed containing data in triples (i.e. subject, predicate, object),
you can use the [RDF.Stage].[ProcessTriples] stored procedure. There are several different
options for how the subject, predicate, and object can be defined. These are described in the
comments of the [RDF.Stage].[ProcessTriples] stored procedure, though not every method is
fully implemented in this version of Profiles RNS. Typically, ProcessDataMap is the better way
of loading data.

Extending Profiles RNS

To illustrate the process of extending the Profiles RNS ontology and importing data, we will use
a brief tutorial/example. Suppose you have a data feed describing the cars people drive to work,
which contains three fields: the PersonlD, the make and model, and the license plate number.
The general steps are:

1) Extend the ontology

a. Define a namespace

b. Define the new class in that namespace

c. Define the new properties in that namespace
2) Import the data feed to an extended schema table

25

a. Create a new extended schema table (i.e., [Profile.Data].*)
b. Load the feed into the new table

3) Create a mapping from the new table to the ontology

4) Run ProcessDataMap to generate RDF

The file SQL_Examples\ProcessDataMap.sql contains additional details and example queries
that show how each of these steps work.

When extending Profiles RNS, carefully consider how to use the ontology. Whenever possible,
use existing classes and properties. When you create custom ontology extensions, your data
will no longer be compatible with other institutions.

26

