
1

Profiles Research Networking Software
API Guide

Documentation Version: June 5, 2018

Software Version: ProfilesRNS_2.11.1

Table of Contents

Overview .. 2

PersonID, URI, and Aliases.. 3

1) Profiles RNS Beta API ... 4

2) RDF Crawl ... 5

3) SPARQL .. 7

4) Profiles RNS 1.0 Search API ... 8

Content Type Summary ..11

Frequently Used VIVO Classes and Properties ...12

2

Overview

Profiles RNS consists of three components: 1) a database; 2) Application Programming
Interfaces (APIs), which enable computer programs to access the information in the database;
and 3) a website, which illustrates one way of calling the APIs and presenting the data. Although
the website is the aspect of Profiles RNS that is most visible to users, the APIs have the
potential to have far greater impact because they allow any application developer to discover
new uses for the data and build new functionality not provided by the website.

Profiles RNS is a Semantic Web application that uses the Resource Description Framework
(RDF) data model. In RDF, every entity (e.g., person, publication, concept) is given a unique
URI. Entities are linked together using “triples” that contain three URIs--a subject, predicate, and
object. For example, the URI of a Person can be connected to the URI of a Concept through a
predicate URI of hasResearchArea. An instance of Profiles RNS can have millions of URIs and
triples. Semantic Web applications use an ontology, which describes the classes and properties
used to define entities and link them together. Profiles RNS uses the VIVO Ontology, which was
developed as part of an NIH-funded grant to be a standard for academic and research
institutions. A growing number of sites around the world are adopting research networking
platforms that use the VIVO Ontology. Because RDF can link different triple-stores that use the
same ontology, software developers are able to create tools that span multiple institutions and
data sources.

There are four types of APIs in Profiles RNS 1.0. Below are just brief descriptions. The rest of
this document provides more detail. Note that the text references files in the API_Examples
folder.

1) The old XML based web services from Profiles RNS Beta. This provides backwards
compatibility for institutions that built applications using the older version of Profiles
RNS. These web services do not take advantage of many of the new features of Profiles
RNS 1.0. Users are encouraged to switch to one of the new APIs.

2) RDF crawl. Profiles RNS 1.0 uses Semantic Web technologies (described below).
Basically, this means that for every HTML page in the Profiles RNS website, there is a
corresponding RDF document, which contains the data for that page in RDF/XML
format. Web crawlers can follow the links embedded within the RDF/XML to access
additional content.

3) SPARQL endpoint. SPARQL is a programming language that enables arbitrary queries

against RDF data. This provides the most flexibility in accessing data; however, the
downsides are the complexity in coding SPARQL queries and performance.

4) Profiles RNS 1.0 Search API. This is a web service, which provides support for the most

common types of queries. It is designed to be easier to use and to offer better
performance than SPARQL, but at the expense of fewer options. It enables full-text
search across all entity types, faceting, pagination, and sorting options. The request
message to the web service is in XML format, but the output is in RDF/XML format.

3

PersonID, URI, and Aliases

Internally, Profiles RNS keeps track of each person who has a profile by assigning them a
unique PersonID value. However, RDF enables the website to create profiles for any type of
entity (e.g., a department, center, publication, concept, etc.). In RDF, a URI is the unique
identifier for all entities. In Profiles RNS, the format of the URI is

http://[ProfilesRootPath]/profile/NodeID

where NodeID is some integer value. Each person in Profiles RNS has a URI in addition to his
or her PersonID. Because the URI is the more general identifier, this should be used in most
contexts instead of the PersonID. For backwards compatibility, the old Profiles RNS Beta API
uses the PersonID. However, all the newer APIs use URIs instead.

The PersonID is generated by the Profiles RNS software. It is not the same as your institution’s
person identifier (e.g., Harvard ID), which was part of the data used to load the Profiles RNS
database.

Profiles RNS 1.0 has a new Alias feature, which allows alternative URLs to render the same
HTML profile page by pulling data from the same URI. This allows “user-friendly” URLs, such as
“display/person/gweber” instead of “profile/123456”. However, the SPARQL and Profiles RNS
1.0 Search APIs do not recognize the Aliases and require the actual URI.

4

1) Profiles RNS Beta API

Note: This API is included only for backwards compatibility with older versions of
Profiles RNS. Users are encouraged to switch to one of the new APIs.

The Profiles RNS Beta included an API that enabled data to be queried and extracted via an
XML-based web service. There are two ways to call this web service. The first returns a list of
people who match search criteria. The list includes the Profiles PersonID for each person and
summary information, such as their names and affiliations. The second returns the full profile for
a single person, including publications and passive networks such as coauthors and similar
people. In both cases, the web service is called by sending it a request XML message via HTTP
POST. The file Request.xsd is the schema for the request XML message. The same schema is
used for both ways of calling the web service. The output of the web service is a response XML
message, whose schema is defined in the file Response.xsd. A typical use case for the web
service is to request a list of people who match certain search criteria, and then to request the
full profiles for a subset of the PersonIDs that are returned by the initial request.

To call the web service, post the request XML message to a URL that has the form:

http://[ProfilesRootPath]/ProfileService.svc/ProfileSearch

1.1) Search for multiple people

The file GetPersonList.xml is an example request XML message that returns a list of people
based on search criteria. Query parameters include first and last name, department and
institution name, faculty type, keyword search string, and pagination options. The response
returns a summary for each person who matches the search criteria. The summary includes the
PersonID and a few additional variables such as name and affiliation. In the
Connects.Profiles.ProfileService web.config file, if the IsSecure variable is set to false, then only
the first 100 matching people will be returned by the API. If it is set to true, then the number of
people returned is limited only by MaxRecords parameter in the request XML.

1.2) Request the full profile for a single person

The file GetSinglePerson.xml is an example request XML message that returns the full profile
for a given PersonID. The output filters in the request message define which passive networks
should be returned. If the Summary attribute is set to true for an output filter, then only the top
ranking items in the passive network will be returned.

5

2) RDF Crawl

The URIs in Profiles RNS have the form

http://[ProfilesRootPath]/profile/NodeID

Following URI/RDF conventions, this URI is simply an identifier. It does not return any content. If
you enter the URI into a web browser, you will be redirected either to a URL that returns HTML
content or RDF content, depending on the content-type in the request header. This process is
called URI resolution. The corresponding HTML and RDF URLs are:

http://[ProfilesRootPath]/display/NodeID

and

http://[ProfilesRootPath]/profile/NodeID/NodeID.rdf

To end-users of the Profiles RNS website, the URI resolution will be seamless, and they will be
able to navigate through pages in the same way as they do an ordinary website. They will see
“display/NodeID” (or an Alias) in their browser window.

In order to obtain the RDF data for a profile, call its URI, but use a Request Content Type of
“application/rdf+xml”. This will redirect to the RDF URL and return RDF/XML data rather than
rendered HTML. The Response Content Type of the RDF/XML is “application/rdf+xml”.

Alternatively, the RDF URL can be called directly without a specified Request Content Type to
obtain the same data. However, calling the URI is better since the address of the RDF URL
might change over time, while the URI is intended to be permanent. The RDF URL is useful for
development/testing purposes because it can be entered into a web browser to take a “quick
look” at the data.

Note that the RDF/XML for a profile will contain URIs to other profiles. Applications consuming
the RDF data often “crawl” these URIs to obtain additional information about the related profiles.

Profiles RNS includes a feature to reduce the number crawls needed for the most commonly
requested types of data. If the request to the URI includes a Header variable named “Expand”
with the value of “true”, then the RDF/XML returned will include both the data for that URI as
well as the data for a subset of linked URIs. For example, for a person, it will return additional
information about that individual’s positions, publications, awards, etc. other than just their URIs.
When the Profiles RNS website renders a profile page, it typically uses Expand = true and
avoids having to request any other data.

By default, all properties are returned when calling a URI. However, for many types of entities,
there is a small subset of properties that are frequently used. To request just those properties,
include a Header variable named “ShowDetails” with the value of “false”. This advantage of this
method is that it runs faster.

6

Obtaining RDF data about a profile by directly calling its URI is the replacement for the Profiles
RNS Beta API single-person request. Because of the use of URIs instead of PersonIDs, the
RDF data for any type of entity, not just people, can be obtained this way.

7

3) SPARQL

SPARQL (pronounced “sparkle”) stands for Simple Protocol and RDF Query Language. Details
of the SPARQL language are beyond the scope of this document, but an introduction and links
to additional information are available at:

http://en.wikipedia.org/wiki/SPARQL

SPARQL is similar to SQL for relational databases in that it enables arbitrary queries to the RDF
data. However, SPARQL has a different syntax than SQL and better handles the network
structure of RDF.

To run a SPARQL query, post the query text to the SPARQL API (aka “endpoint”), which will
have the form

http://[ProfilesSPARQLRootPath]/ProfilesSPARQLAPI.svc/Search

The Request Content Type should be “text/xml”. The output of the API will contain a list of URIs
or other data specified by the query. Additional data about those URIs can be obtained using
the “RDF Crawl” method described above. The Response Content Type of the SPARQL output
is “text/xml”.

The file QueryRequest.xsd is the schema for both the SPARQL request and response
messages.

The file SPARQLQuery.txt is an example query that returns all RDF triples for all entities of type
people whose last name is “Weber”.

8

4) Profiles RNS 1.0 Search API

This is a single XML based web service, which enables full-text search across all entity types,
and provides options for faceting, pagination, and sorting. It is designed to make the most
common types of queries easier to create and faster to execute than SPARQL. The general
structure of the XML request message is:

<SearchOptions>
 <MatchOptions>
 <SearchString ExactMatch="true/false">text</SearchString>
 <ClassGroupURI>URI</ClassGroupURI>
 <ClassURI>URI</ClassURI>
 <SearchFiltersList>
 <SearchFilter IsExclude="0/1" Property="URI" Property2="URI"
 MatchType="Exact/Left">text</SearchFilter>
 </SearchFiltersList>
 </MatchOptions>
 <OutputOptions>
 <Offset>integer</Offset>
 <Limit>integer</Limit>
 <SortByList>
 <SortBy IsDesc="0/1" Property="URI" Property2="URI" Property3="URI" />
 </SortByList>
 </OutputOptions>
</SearchOptions>

This gets posted to a URL with the form

http://[ProfilesSearchAPIRootPath]/ProfilesSearchAPI.svc/Search

which returns RDF/XML data. The first rdf:Description tag has rdf:nodeID="SearchResults". The
properties of this node describe the search parameters (SearchOptions), the number of
matches (prns:numberOfConnections), and a breakdown of the number of matches by class
and class group (prns:matchesCalssGroupList). The SearchResults node also has a list of
prns:hasConnection properties that point to prns:Connection nodes, which correspond to the
individual items matching the query. The RDF/XML returned by the API also contains
rdf:Description tags for each of the prns:Connection nodes. Those tags contain properties that
describe the search relevance (prns:connectionWeight), sort order (prns:sortOrder), class/type
(rdf:type), name (rdfs:label), and the URI of the matching entity (rdf:object).

The file SearchOptions.xsd is the schema for the Search API request message. The Request
Content Type should be “text/xml”. The response message is an RDF/XML document. The
Response Content Type of the RDF/XML is “application/rdf+xml”.

Note that this Search API provides functionality similar to the Profiles RNS Beta API multiple-
person request. A typical use case would be to query the Search API to get a list of URIs that
match some search criteria, and then use RDF crawl to obtain detailed data for each of those
URIs.

Below is a description of the tags in the request message. All tags and attributes are optional.
Tags and attributes whose type is URI must use a full URI (e.g.,
“http://xmlns.com/foaf/0.1/firstName”), not namespace prefix (e.g., “foaf:firstName”).

9

Tag[@Attribute] Type Description

SearchString text This is a list of keywords or quoted phrases that will be
used to identify matching nodes. A thesaurus is used to
expand certain terms (e.g., “cancer” becomes “cancer
OR neoplasm”), stop words (e.g., “the”, “of”, etc.) are
removed, and stemming handles different parts of
speech (e.g., “cancers” becomes “cancer*”). Microsoft’s
SQL Server full-text search then compares the parsed
and expanded search string to literal values in the RDF.

SearchString[@ExactMatch] true/false If this attribute is “true”, then the exact search string,
without any parsing, will be compared to RDF literals.

ClassGroupURI URI This limits the search results to a specific group of RDF
classes (e.g.,
"http://profiles.catalyst.harvard.edu/ontology/prns#Class
GroupOrganizations").

ClassURI URI This limits the search results to a specific class (e.g.,
"http://xmlns.com/foaf/0.1/Person").

SearchFilter text This limits the search results based on the value of a
particular property. For example, if “Griffin” is used as the
SearchString, then people with either a first or last name
of “Griffin” will be returned. However, if “Griffin” is used as
the SearchFilter with Property =
“http://xmlns.com/foaf/0.1/firstName”, then the first name
must be “Griffin”. Note that multiple SearchFilters can be
defined. SearchString, ClassGroupURI/ClassURI, and
SearchFilter can be used together, for example, to find
people matching “cancer” whose first name is “Griffin”.

SearchFilter[@IsExclude] 0/1 If IsExclude = “1”, then only nodes that do NOT have a
property with this value will be returned.

SearchFilter[@Property] URI This is the property used for the SearchFilter if Property2
is not defined.

SearchFilter[@Property2] URI If Property2 is defined, then the SearchFilter allows item
X to be returned in the search results if X is linked
through Property to some item Y whose Property2
matches the value of the SearchFilter. For example, if
Property =
“http://profiles.catalyst.harvard.edu/ontology/prns#person
InPrimaryPosition”, and Property2 =
“http://vivoweb.org/ontology/core#positionInOrganization”
, and the value of the SearchFilter tag is the URI of an
organization, then only nodes (e.g., people) whose
primary position is at the organization with the specified
URI will be returned. Determining the right combination of
Property, Property2, and SearchFilter value to use
requires a good understanding of the ontology, but it
provides a lot of flexibility in doing targeted searches or
faceting.

SearchFilter[@MatchType] Exact/Left This determines if the SearchFilter value should match
the property value exactly (Exact) or as a prefix (Left).

Offset Integer This is used for pagination to indicate the starting item to
return in the search results. An offset of “0” includes the
first matching item. An offset of “1” starts with the second
matching item.

Limit Integer This is used for pagination to indicate the maximum
number of items to return in the search results. An offset

10

of “5” and limit of “20” returns items 6 through 25.

SortBy[@IsDesc] 0/1 The SortBy tags indicate which properties should be
used to sort the search results. The default is to sort by
query relevance. Up to three SortBy tags can be defined.
They are applied in the order in which they appear in the
SearchOptions XML—the matching items are first sorted
by the first SortBy tag, and if there are ties, then the
second SortBy tag is applied, etc. The actual sorting uses
the value of the SortBy property, not the URI of the
property. The IsDesc attribute determines if the sorting is
ascending (“0”) or descending (“1”).

SortBy[@Property] URI The property of the matching nodes whose value will be
used to sort the search results list.

SortBy[@Property2] URI Similar to the Property2 attribute of the SearchFilter tag,
if a Property2 is defined, then sorting occurs on the value
of Property2 of the node connected to the matching node
through Property.

SortBy[@Property3] URI If a Property3 is defined, then sorting occurs on the value
of Property3 of the node connected to some node
through Property2, which is connected to the matching
node through Property.

The file SearchByKeyword.xml is an example XML request message that returns the 15 nodes
most related to “asthma”. The file SearchByKeywordFaceting.xml is an example that returns just
the publications related to “asthma”. The file SearchForPeopleOnly.xml is an example that
returns the first 15 people whose last name starts with “Smith”, sorted by last name then first
name.

11

Content Type Summary

Each API uses a different Request and Response Content Type. The table below provides a
summary.

API Request Content Type Response Content Type

Profiles RNS Beta API text/xml text/xml

RDF Crawl application/rdf+xml application/rdf+xml

SPARQL text/xml text/xml

Profiles RNS 1.0 Search API text/xml application/rdf+xml

12

Frequently Used VIVO Classes and Properties

Creating SPARQL queries and taking full advantage of the Search API requires an
understanding of the underlying ontology. Profiles RNS uses the VIVO ontology. This is an
extensive ontology, with thousands of classes and properties. A full description of this is outside
the scope of this document. Unfortunately, there is not a lot of information available about the
VIVO ontology. An “OWL” file, which can be viewed by ontology editors such as Protégé can be
downloaded from

http://vivoweb.org/download

A detailed diagram illustrating some portions of the ontology can be found at

http://sourceforge.net/apps/mediawiki/vivo/index.php?title=VIVO_1.3_Ontology_overview_diagram

Below is an even further simplified diagram, highlighting selected classes and object properties.

To help you get started, below is a brief summary of the VIVO namespaces, classes, and
properties:

The VIVO ontology is actually the combination of many popular Semantic Web ontologies. Each
ontology has its own namespace. The table below lists the namespaces and the prefix used in
RDF/XML. The most important are (1) rdf, rdfs, and owl, which define generic RDF concepts, (2)
foaf (friend-of-a-friend), which describes people, (3) bibo, which describes publications, (4) skco,
which describes subject areas and concepts, (5) vivo, which are custom classes and properties
created for the VIVO ontology to describe activities in academic institutions, and (6) prns, which
are custom classes and properties created for the Profiles RNS software.

http://vivoweb.org/download
http://sourceforge.net/apps/mediawiki/vivo/index.php?title=VIVO_1.3_Ontology_overview_diagram

13

Prefix Namespace

afn http://jena.hpl.hp.com/ARQ/function#

bibo http://purl.org/ontology/bibo/

dcelem http://purl.org/dc/elements/1.1/

dcterms http://purl.org/dc/terms/

event http://purl.org/NET/c4dm/event.owl#

foaf http://xmlns.com/foaf/0.1/

geo http://aims.fao.org/aos/geopolitical.owl#

obo http://purl.obolibrary.org/obo/

owl http://www.w3.org/2002/07/owl#

owl2 http://www.w3.org/2006/12/owl2-xml#

prns http://profiles.catalyst.harvard.edu/ontology/prns#

pvs http://vivoweb.org/ontology/provenance-support#

rdf http://www.w3.org/1999/02/22-rdf-syntax-ns#

rdfs http://www.w3.org/2000/01/rdf-schema#

scirr http://vivoweb.org/ontology/scientific-research-resource#

skco http://www.w3.org/2004/02/skos/core#

skos http://www.w3.org/2008/05/skos#

swvs http://www.w3.org/2003/06/sw-vocab-status/ns#

vann http://purl.org/vocab/vann/

vitro http://vitro.mannlib.cornell.edu/ns/vitro/public#

vitro07 http://vitro.mannlib.cornell.edu/ns/vitro/0.7#

vivo http://vivoweb.org/ontology/core#

xsd http://www.w3.org/2001/XMLSchema#

Below are frequently used classes. Note that after the namespace prefix, class names generally
start with an upper case letter. RDF is case sensitive.

Class Description

foaf:Person A person (faculty, staff, etc.)

foaf:Organization Any type of organization (institution, hospital, etc.)

vivo:Department A subclass of foaf:organization

vivo:Division A subclass of foaf:organization

vivo:InformationResource Publications, media files, data sets, etc.

bibo:AcademicArticle A subclass of vivo:informationResource

vivo:Authorship Connects a foaf:Person to a vivo:informationResource

vivo:Position Connects a foaf:Person to a foaf:Organization

skco:Concept A subject area or concept

vivo:AwardReceipt An award given to an individual

prns:FacultyRank An academic rank (e.g., Full Professor)

Below are frequently used properties. Note that after the namespace prefix, property names
generally start with a lower case letter.

Property Description

rdf:type The class of a URI

rdfs:label The default name of a URI

foaf:firstName A person’s first name

foaf:lastName A person’s last name

vivo:overview A description of the URI (e.g., a person’s research narrative)

vivo:awardOrHonor Links a foaf:Person to a vivo:AwardReceipt

vivo:hasResearchArea Links a foaf:Person to a skco:Concept

14

vivo:authorInAuthorship Links a foaf:Person to a vivo:Authorship

vivo:linkedInformationResource Links a vivo:Authorship to a vivo:InformationResource

vivo:personInPosition Links a foaf:Person to a vivo:Position

vivo:positionInOrganization Links a vivo:Position to a foaf:Organization

Note that people are not directly linked to publications or organizations; the links go through the
classes vivo:Authorship and vivo:Position. Specifically:

foaf:Person → vivo:authorInAuthorship → vivo:Authorship → vivo:linkedInformationResource →
vivo:InformationResource

foaf:Person → vivo:personInPosition → vivo:Position → vivo:positionInOrganization →
foaf:Organization

